scholarly journals Diet, psychosocial stress, and Alzheimer’s disease-related neuroanatomy in female nonhuman primates

2020 ◽  
Author(s):  
Brett M. Frye ◽  
Suzanne Craft ◽  
Thomas C. Register ◽  
Rachel N. Andrews ◽  
Susan E. Appt ◽  
...  

ABSTRACTINTRODUCTIONAssociations between diet, psychosocial stress, and neurodegenerative disease, including Alzheimer’s disease (AD), have been reported, but causal relationships are difficult to determine in human studies.METHODSWe used structural magnetic resonance imaging in a well-validated nonhuman primate model of AD-like neuropathology to examine the longitudinal effects of diet (Mediterranean versus Western) and social subordination stress on brain anatomy, including global volumes, cortical thicknesses and volumes, and twenty individual regions of interest (ROIs).RESULTSWestern diet resulted in greater cortical thicknesses, total brain volumes and gray matter, and diminished cerebrospinal fluid and white matter volumes. Socially stressed subordinates had smaller whole brain volumes but larger ROIs relevant to AD than dominants.DISCUSSIONThe observation of increased size of AD-related brain areas is consistent with similar reports of mid-life volume increases predicting increased AD risk later in life. While the biological mechanisms underlying the findings require future investigation, these observations suggest that Western diet and psychosocial stress instigate pathologic changes that increase risk of AD-associated neuropathologies, whereas Mediterranean diet may protect the brain.RESEARCH IN CONTEXTSystematic review: The authors reviewed the literature with PubMed and Google Scholar and found a number of publications which are cited that suggest that AD pathogenesis begins well before the onset of symptoms.Interpretation: Our findings support the hypothesis that Western diet and psychosocial stress may instigate neuroinflammatory responses that increase risk of later developing AD-like neuropathologies, whereas the structural stasis in the Mediterranean diet group may represent a resilient phenotype.Future directions: The manuscript serves as a critical first step in describing risk and resilient phenotypes during middle age in a nonhuman primate model of AD-like neuropathology. This report lays the groundwork for ongoing efforts to determine whether neuroinflammatory profiles differed across diet and stress groups. Future studies should aim to understand the temporal emergence of functional disparities associated with the changes in brain structure observed here.HIGHLIGHTSGlobal brain volumes changed in response to Western, but not Mediterranean, diet.Western diet increased cortical thickness in multiple regions relevant to AD.Mediterranean diet did not alter cortical thicknesses relevant to AD.Brain regions associated with AD risk differed between low and high stress monkeys.Psychosocial stress may modulate the effects of diet on the brain.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 222-OR
Author(s):  
MICHAEL J. NASH ◽  
TAYLOR K. SODERBORG ◽  
RACHEL C. JANSSEN ◽  
ERIC M. PIETRAS ◽  
JACOB E. FRIEDMAN

2020 ◽  
Author(s):  
Di Wu ◽  
Yongjuan Fu ◽  
Longfei Wu ◽  
Mitchell Huber ◽  
Jian Chen ◽  
...  

Author(s):  
Yining Chen ◽  
Meredith C. Poole ◽  
Shelby V. Olesovsky ◽  
Allen A. Champagne ◽  
Kathleen A. Harrison ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeffrey L. Ebersole ◽  
Radhakrishnan Nagarajan ◽  
Sreenatha Kirakodu ◽  
Octavio A. Gonzalez

AbstractWe used a nonhuman primate model of ligature-induced periodontitis to identify patterns of gingival transcriptomic after changes demarcating phases of periodontitis lesions (initiation, progression, resolution). A total of 18 adult Macaca mulatta (12–22 years) had ligatures placed (premolar, 1st molar teeth) in all 4 quadrants. Gingival tissue samples were obtained (baseline, 2 weeks, 1 and 3 months during periodontitis and at 5 months resolution). Gene expression was analyzed by microarray [Rhesus Gene 1.0 ST Array (Affymetrix)]. Compared to baseline, a large array of genes were significantly altered at initiation (n = 6049), early progression (n = 4893), and late progression (n = 5078) of disease, with the preponderance being up-regulated. Additionally, 1918 genes were altered in expression with disease resolution, skewed towards down-regulation. Assessment of the genes demonstrated specific profiles of epithelial, bone/connective tissue, apoptosis/autophagy, metabolism, regulatory, immune, and inflammatory responses that were related to health, stages of disease, and tissues with resolved lesions. Unique transcriptomic profiles occured during the kinetics of the periodontitis lesion exacerbation and remission. We delineated phase specific gene expression profiles of the disease lesion. Detection of these gene products in gingival crevicular fluid samples from human disease may contribute to a better understanding of the biological dynamics of the disease to improve patient management.


2021 ◽  
Author(s):  
Samuel J. Kesseli ◽  
Jared N. Gloria ◽  
Nader Abraham ◽  
Samantha E. Halpern ◽  
Greta N. Cywinska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document