scholarly journals Circulating Clonally Expanded T Cells Reflect Functions of Tumor Infiltrating T Cells

2020 ◽  
Author(s):  
Liliana Lucca ◽  
Pierre-Paul Axisa ◽  
Benjamin Lu ◽  
Brian Harnett ◽  
Shlomit Jessel ◽  
...  

AbstractUnderstanding the relationship between tumor and peripheral immune environments could allow longitudinal immune monitoring in cancer. Here, we examined whether T cells that share the same TCRαβ and are found in both tumor and blood can be interrogated to gain insight into the ongoing tumor T cell response. Paired transcriptome and TCRαβ repertoire of circulating and tumor-infiltrating T cells were analyzed from matched tumor and blood from patients with metastatic melanoma at the single cell level. We found that in circulating T cells matching clonally expanded tumor-infiltrating T cells (circulating TILs), gene signatures of effector functions, but not terminal exhaustion, reflect those observed in the tumor. In contrast, features of exhaustion are displayed predominantly by T cells present only in tumor. Finally, genes associated with a high degree of blood-tumor TCR sharing were overexpressed in tumor tissue after immunotherapy. These data demonstrate that circulating TILs, identified by TCRs shared with T cells in tumors, have unique transcriptional expression patterns that may have utility for the interrogation of T cell function in cancer immunotherapy.SummaryCombining transcriptomic and TCRαβ repertoire analysis of circulating and tumor-infiltrating CD8 T cells from patients with metastatic melanoma, we identify a blood-based population with effector properties that reflect those of clonally related tumor-resident T cells.

2021 ◽  
Vol 218 (4) ◽  
Author(s):  
Liliana E. Lucca ◽  
Pierre-Paul Axisa ◽  
Benjamin Lu ◽  
Brian Harnett ◽  
Shlomit Jessel ◽  
...  

Understanding the relationship between tumor and peripheral immune environments could allow longitudinal immune monitoring in cancer. Here, we examined whether T cells that share the same TCRαβ and are found in both tumor and blood can be interrogated to gain insight into the ongoing tumor T cell response. Paired transcriptome and TCRαβ repertoire of circulating and tumor-infiltrating T cells were analyzed at the single-cell level from matched tumor and blood from patients with metastatic melanoma. We found that in circulating T cells matching clonally expanded tumor-infiltrating T cells (circulating TILs), gene signatures of effector functions, but not terminal exhaustion, reflect those observed in the tumor. In contrast, features of exhaustion are displayed predominantly by tumor-exclusive T cells. Finally, genes associated with a high degree of blood–tumor TCR sharing were overexpressed in tumor tissue after immunotherapy. These data demonstrate that circulating TILs have unique transcriptional patterns that may have utility for the interrogation of T cell function in cancer immunotherapy.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Atar Lev ◽  
Amos J. Simon ◽  
Luba Trakhtenbrot ◽  
Itamar Goldstein ◽  
Meital Nagar ◽  
...  

Introduction. Patients with severe combined immunodeficiency (SCID) may present with residual circulating T cells. While all cells are functionally deficient, resulting in high susceptibility to infections, only some of these cells are causing autoimmune symptoms.Methods. Here we compared T-cell functions including the number of circulating CD3+T cells,in vitroresponses to mitogens, T-cell receptor (TCR) repertoire, TCR excision circles (TREC) levels, and regulatory T cells (Tregs) enumeration in several immunodeficinecy subtypes, clinically presenting with nonreactive residual cells (MHC-II deficiency) or reactive cells. The latter includes patients with autoreactive clonal expanded T cell and patients with alloreactive transplacentally maternal T cells.Results. MHC-II deficient patients had slightly reduced T-cell function, normal TRECs, TCR repertoires, and normal Tregs enumeration. In contrast, patients with reactive T cells exhibited poor T-cell differentiation and activity. While the autoreactive cells displayed significantly reduced Tregs numbers, the alloreactive transplacentally acquired maternal lymphocytes had high functional Tregs.Conclusion. SCID patients presenting with circulating T cells show different patterns of T-cell activity and regulatory T cells enumeration that dictates the immunodeficient and autoimmune manifestations. We suggest that a high-tolerance capacity of the alloreactive transplacentally acquired maternal lymphocytes represents a toleration advantage, yet still associated with severe immunodeficiency.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3872-3879 ◽  
Author(s):  
Viola Hoffacker ◽  
Anja Schultz ◽  
James J. Tiesinga ◽  
Ralf Gold ◽  
Berthold Schalke ◽  
...  

Abstract Thymomas are the only tumors that are proven to generate mature T cells from immature precursors. It is unknown, however, whether intratumorous thymopoiesis has an impact on the peripheral T-cell pool and might thus be related to the high frequency of thymoma-associated myasthenia gravis. This study shows, using fluorescence-activated cell sorting-based analyses and T-cell proliferation assays, that thymopoiesis and T-cell function in thymomas correspond with immunologic alterations in the blood. Specifically, the proportion of circulating CD45RA+CD8+ T cells is significantly increased in patients with thymoma compared with normal controls, in accordance with intratumorous T-cell development that is abnormally skewed toward the CD8+ phenotype. Moreover, it is primarily the proportion of circulating CD45RA+CD8+ T cells that decreases after thymectomy. The results also demonstrate that T cells reactive toward recombinant autoantigens are distributed equally between thymomas and blood, whereas T-cell responses to foreign antigen (ie, tetanus toxoid) are seen only among circulating T cells and not among thymoma-derived T cells. These functional studies support the hypothesis that thymopoiesis occurring within thymomas alters the peripheral T-cell repertoire. Because many thymomas are enriched with autoantigen-specific T cells, a disturbance of circulating T-cell subset composition by export of intratumorous T cells may contribute to paraneoplastic autoimmune disease arising in patients with thymoma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3893-3893
Author(s):  
Colm Keane ◽  
Kimberly Jones ◽  
Clare Gould ◽  
David Hamm ◽  
Peter Wood ◽  
...  

Abstract Background: We have recently demonstrated that an 'immune score' is strongly and independently prognostic in de novo DLBCL treated with R-CHOP immuno-chemotherapy. The score quantifies the relative composition of immune effectors (T cells) and checkpoints (e.g. PD-1 axis molecules and M2 macrophages), as a measure of net anti-tumoral immunity within the TME. It is also known that a diverse TCR repertoire is a hallmark of a robust anti-HIV T cell immune response; conversely in metastatic melanoma treated with anti-PD-1 checkpoint blockade, narrow more clonal TCR repertoires are associated with favorable response. The relationship between the intra-tumoral TCR repertoire and the TME in DLBCL following R-CHOP immuno-chemotherapy is unknown. Methods High-throughput unbiased TCR β chain sequencing was performed on 116 nodal tissues (101 de novo DLBCL patients treated with R-CHOP with long-term follow-up including 8 EBV+DLBCL; and 15 age/gender matched healthy lymph nodes). Outcomes included measurement of productive uniques (a measure of the number of functional T cells with a distinct TCR rearrangement or 'richness'); entropy (a measure of TCR 'diversity'), 'clonality' (a measure of clonal expansions) and the 'maximal frequency' of the most highly expressed clone within tumor biopsies. Results were compared to digital quantification (by nanoString) of key immune effector and checkpoint genes within the TME, the immune score, malignant cell-of-origin (COO), R-IPI and patient survival. Results: First we compared the TCR repertoire in lymphomatous and healthy nodes. There was a marked increase in clonality, reduced diversity and high maximal frequency within DLBCL nodes relative to healthy nodal tissue (both p<0.0001), consistent with an abnormally narrow TCR repertoire of antigen-specific T cells. Next, we tested the relationship between TCR and the TME. Notably, there was modest (r=0.3-0.7) but highly significant (all p<0.001) positive correlations between both richness and diversity (but not clonality) with CD3/CD4/CD8 T cells, and a range of immune checkpoints including PD-L1, PD-L2, LAG-3, CSF-1 and TIM-3. These findings are strongly suggestive of an adaptive immune response, in which malignant B cells influence (i.e. 'adapt') the TME in an attempt to counter an effective anti-lymphoma T-cell response that is in part influenced by the breadth of the TCR repertoire. Then we investigated the TCR repertoire in the context of prognosis and overall survival (OS) following R-CHOP. There were no correlations between COO or R-IPI with any TCR parameter. However, the presence of a high maximal frequency in the tumour biopsy was associated with significantly inferior 5 year OS of 59% compared to 81% in patients without a high maximal frequency (p=0.03, Figure 1). As expected, the immune score stratified patients into highly disparate outcomes: high-score 5-year overall survival 96% versus 42% for low-score (p<0.0001). Interestingly, there were significant differences in the TCR repertoire between the two groups. There was a significant increase for both richness and diversity in high immune score lymphoma patients (p=0.015 and p=0.018 respectively). In keeping, clonality was not increased in high-immune score patients. The only samples associated with increased T cell clonality were those patients with very high levels of intratumoral EBV, potentially reflecting the latent viral antigens expressed by this lymphoma. In the group of patients with poor prognosis (5 year OS 59%), defined by high maximal frequency, the immune score stratified two groups with very different outcomes (5 year OS 90% vs. 30%, p=0.003). Conclusions: These findings indicate the TCR repertoire as a key parameter of the TME that the malignant B cell attempts to narrow. A broad TCR repertoire is associated with a good prognostic immune score (i.e. increased T cells relative to PD-1 axis molecules and M2 macrophages checkpoints) after R-CHOP immunoÐchemotherapy, whereas a more clonal T cell response is associated with significantly inferior outcome. Figure 1. Figure 1. Disclosures Hamm: Adaptive Biotech: Employment.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 11563-11563 ◽  
Author(s):  
Elias Obeid ◽  
Chun Zhou ◽  
Alexander Macfarlane ◽  
R. Katherine Alpaugh ◽  
Cecilia McAleer ◽  
...  

11563 Background: Correlative studies to determine the effect of combining chemotherapy (CT) simultaneously with checkpoint inhibition on the peripheral immune response are planned as part of a clinical trial in MTNB. The trial design is a Safety run-in, into a randomized phase II trial of combination pembrolizumab (P) with carboplatin (C) and gemcitabine (G) in patients with mTNBC. One key concern is that CT may suppress immune cell function, thereby diminishing the efficacy of PD-1 blockade. Methods: Patients with a diagnosis of mTNBC are recruited to this trial with a Safety Run-in (N = 6-12 subjects), followed by a randomized design of C + G with/without P (2:1 randomization, N = 75). Safety run-in consists of P 200 mg on day 1 of each 21-day cycle, and C (AUC2) + G (800mg/m2) on days 1 and 8. Patients are consented for a peripheral blood (PB) collection pre-cycle 1 and on day 1 of cycle 3, in order to phenotype immune system changes by flow-cytometry. Results: Six patients have been recruited as of this interim analysis. Data from PB analysis of 3 on-treatment patients is available. In 2 subjects, the activation marker CD69 increased on CD4+ and CD8+ T cells from baseline, indicating enhanced T cell function. Also the ratio of CD8+ T cells to regulatory T cells (CD25high CD127low) has increased. Both patients expressed PD-1 on T cells at baseline. The 2 subjects with evidence for enhanced immune response have a continued clinical benefit (12 cycles subject 1, 8 cycles subject 2). In contrast, subject 3 (who discontinued P and received corticosteroids for grade a 2 immune-related hepatitis during cycle 2) lacked expression of PD-1 on T cells and did not exhibit these immune changes, and her disease clinically progressed after 4 cycles of CT. Conclusions: Although comprising a very limited number of patients, early analysis from our correlative studies of combining CT with the PD-1 blockade revealed evidence for effective immune stimulation in two subjects. Furthermore, immune changes accompanied a lasting clinical response. Although early, we conclude that combining CT with checkpoint blockade can achieve its goal of unleashing an anti-tumor immune response in mTNBC patients. Clinical trial information: NCT02755272.


1998 ◽  
Vol 1 (6) ◽  
pp. 1-20 ◽  
Author(s):  
Julian K. Hickling

T lymphocytes (T cells) play critical roles in the regulation of immune responses, and are responsible for mediating many of the effector mechanisms of the immune system. For this reason, there has always been a need for assays to measure accurately the activity of populations of T cells, both in model (animal) systems and in humans. The expansion of the biotechnology industry has led to a dramatic increase in the number of novel immunotherapeutics that are being developed for the treatment of cancer, autoimmune disorders and infectious diseases. This increase in activity in the field of immunotherapy, coupled with the expense of clinical trials, has led to renewed interest in methods that accurately assess T-cell function, as researchers seek to maximise the amount of information that can be obtained from each clinical study. Assessing the quantitative and qualitative nature of a T-cell response, for example following vaccination or immunosuppressive therapy, can provide valuable information about the efficacy of a treatment, in place of a clinical endpoint. This article reviews some of the established methods that are used to monitor human T-cell activity, and describes some new approaches that are in development to increase the speed, sensitivity and relevance of such methods.


2009 ◽  
Vol 106 (37) ◽  
pp. 15807-15812 ◽  
Author(s):  
Kenichiro Shimatani ◽  
Yasuhiro Nakashima ◽  
Masakazu Hattori ◽  
Yoko Hamazaki ◽  
Nagahiro Minato

Although altered T cell function plays a part in immunosenescence, the mechanisms remain uncertain. Here we identify a bona fide age-dependent PD-1+ memory phenotype (MP) CD4+ T cell subpopulation that hardly proliferates in response to T cell receptor (TCR) stimulation and produces abundant osteopontin at the cost of typical T cell lymphokines. These T cells demonstrate impaired repopulation in Rag2−/− mice, but a homeostatic proliferation in γ-ray–irradiated mice. These T cells also reveal a unique molecular signature, including a strong expression of C/EBPα normally expressed in myeloid-lineage cells, with diminished c-Myc and cyclin D1. Transduction of Cebpa in regular CD4+ T cells inhibited the TCR-mediated proliferation with c-Myc and cyclin D1 repression and caused a striking activation of Spp1 encoding osteopontin along with concomitant repression of T cell lymphokine genes. Although these T cells gradually increase in number with age and become predominant at the senescent stage in normal mice, the generation is robustly accelerated during leukemia. In both conditions, their predominance is associated with the diminution of specific CD4+ T cell response. The results suggest that global T cell immunodepression in senescence and leukemia is attributable to the increase in PD-1+ MP CD4+ T cells expressing C/EBPα.


2021 ◽  
Author(s):  
Khalid W Kalim ◽  
Jun-Qi Yang ◽  
Mark Wunderlich ◽  
Vishnu Modur ◽  
Phuong Nguyen ◽  
...  

Regulatory T (Treg) cells play an important role in maintaining immune tolerance through inhibiting effector T cell function. In the tumor microenvironment, Treg cells are utilized by tumor cells to counteract effector T cell-mediated tumor killing. Targeting Treg cells may thus unleash the anti-tumor activity of effector T cells. While systemic depletion of Treg cells can cause excessive effector T cell responses and subsequent autoimmune diseases, controlled targeting of Treg cells may benefit cancer patients. Here we show that Treg cell-specific heterozygous deletion or pharmacological targeting of Cdc42 GTPase does not affect Treg cell numbers but induces Treg cell plasticity, leading to anti-tumor T cell immunity without detectable autoimmune reactions. Cdc42 targeting potentiates an immune checkpoint blocker anti-PD-1 antibody-mediated T cell response against mouse and human tumors. Mechanistically, Cdc42 targeting induces Treg cell plasticity and unleashes anti-tumor T cell immunity through carbonic anhydrase I-mediated pH changes. Thus, rational targeting of Cdc42 in Treg cells holds therapeutic promises in cancer immunotherapy.


2019 ◽  
Author(s):  
Fan Zhou ◽  
Justa Kardash ◽  
Hilal Bhat ◽  
Vikas Duhan ◽  
Sarah-Kim Friedrich ◽  
...  

AbstractWith the integration of PD-1 and CTLA-4 targeting immune checkpoint blockade into cancer treatment regimes, the anti-tumoral cytotoxicity of tumor-specific CD8+T cells is well established. However, while the unresponsiveness of CD8+T cells against big tumors is mainly explained by T cell exhaustion, other factors contributing to CD8+T cell failure remain not well studied. Here we used a mouse melanoma model to study the interaction of growing tumor cells, innate immunity and CD8+T cell responses induced by viral replication. Mouse model of melanoma (B16F10-OVA) and infections with arenaviruses. Growing B16F10-OVA cells did not induce systemic ablation of tumor specific CD8+T cells. However, despite the presence of tumor-infiltrating CD8+T cells, the anti-tumoral immune response was very limited. T cell anergy against the tumor was accompanied with a strong down-regulation of MHC-I on advanced tumors. LCMV infection restored the MHC class I expression, enhanced T cell function and lead to tumor regression. This study shows that tumor progression does not necessary lead to systemic exhaustion of the anti-tumoral CD8+T cell response. Lack of innate signals is an additional reason for limited CD8+T cell mediated cytotoxicity against the tumor.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Risa Ebina-Shibuya ◽  
Erin E West ◽  
Rosanne Spolski ◽  
Peng Li ◽  
Jangsuk Oh ◽  
...  

Thymic stromal lymphopoietin (TSLP) is a cytokine that acts directly on CD4+ T cells and dendritic cells to promote progression of asthma, atopic dermatitis, and allergic inflammation. However, a direct role for TSLP in CD8+ T-cell primary responses remains controversial and its role in memory CD8+ T cell responses to secondary viral infection is unknown. Here, we investigate the role of TSLP in both primary and recall responses in mice using two different viral systems. Interestingly, TSLP limited the primary CD8+ T-cell response to influenza but did not affect T cell function nor significantly alter the number of memory CD8+ T cells generated after influenza infection. However, TSLP inhibited memory CD8+ T-cell responses to secondary viral infection with influenza or acute systemic LCMV infection. These data reveal a previously unappreciated role for TSLP on recall CD8+ T-cell responses in response to viral infection, findings with potential translational implications.


Sign in / Sign up

Export Citation Format

Share Document