scholarly journals Neural network dynamics underlying gamma synchronization deficits in schizophrenia

2020 ◽  
Author(s):  
Daisuke Koshiyama ◽  
Makoto Miyakoshi ◽  
Yash B. Joshi ◽  
Juan L. Molina ◽  
Kumiko Tanaka-Koshiyama ◽  
...  

AbstractGamma band (40-Hz) activity is associated with many sensory and cognitive functions, and is critical for cortico-cortical transmission and the integration of information across neural networks. The capacity to support gamma band activity can be indexed by the auditory steady-state response (ASSR); schizophrenia patients have selectively reduced synchrony to 40-Hz stimulation. While 40-Hz ASSR is a translatable electroencephalographic biomarker with emerging utility for therapeutic development for neuropsychiatric disorders, the spatiotemporal dynamics underlying the ASSR have not yet been characterized. In this study, a novel Granger causality analysis was applied to assess the propagation of gamma oscillations in response to 40-Hz steady-state stimulation across cortical sources in schizophrenia patients (n=426) and healthy comparison subjects (n=293). Results revealed distinct, hierarchically sequenced temporal and spatial response dynamics underlying gamma synchronization deficits in patients. During the response onset interval, patients exhibited abnormal connectivity of superior temporal and frontal gyri, followed by decreased information flow from superior temporal to middle cingulate gyrus. In the later (300–500 ms) interval of the ASSR response, patients showed significantly increased connectivity from superior temporal to middle frontal gyrus followed by broad failures to engage multiple prefrontal brain regions. In conclusion, these findings reveal the rapid disorganization of neural circuit functioning in response to simple gamma-frequency stimulation in schizophrenia patients. Deficits in the generation and maintenance of gamma-band oscillations in schizophrenia reflect a fundamental connectivity abnormality across a distributed network of temporo-frontal networks.

1995 ◽  
Vol 74 (1) ◽  
pp. 96-112 ◽  
Author(s):  
M. N. Franowicz ◽  
D. S. Barth

1. Transient and steady-state (40 Hz) evoked potentials, as well as spontaneous and click-evoked gamma-band oscillations, were recorded from 15 lightly anesthetized rats using an 8 x 8 electrode epipial array covering auditory cortex and adjacent areas to determine and compare the spatiotemporal distributions of these four phenomena. 2. The transient evoked response replicated earlier findings in our laboratory, consisting of an initial biphasic sharp wave in area 41, a similar but delayed biphasic sharp wave in area 36, and more widely distributed slow-wave components. Spatiotemporal analysis supported a model of parallel and asynchronous activation of distinct groups of thalamocortical projections underlying the neurogenesis of these temporal components of the middle-latency auditory evoked potential (MAEP) complex. 3. The 40-Hz response to click trains was superimposed on a steady potential shift (SP), both of which were localized within primary auditory cortex. Epipial distributions of the SP were similar to those of the shortest-latency negative peak in area 41 recorded in the same animals, suggesting similar neural generators. The 40-Hz response was more focal and dissimilar from the SP and any other temporal components of the MAEP complex, suggesting that a unique subpopulation of cells underlies its neurogenesis. 4. Spontaneous gamma-band activity, as assessed by power spectrum analysis, was localized to primary and secondary auditory cortex but had a variable distribution between rats that did not conform to the cytoarchitectonic boundaries within subdivisions of this region. Digital movies computed for individual bursts of gamma-activity indicated a high degree of spatiotemporal variability within and between bursts. 5. Single-trial spectral analysis of click responses indicated an inhibition of gamma-band oscillations during most of the MAEP complex, with subsequent enhanced gamma-activity during the 300- to 350-ms slow-wave component that outlasted the MAEP by approximately 500 ms. The epipial distributions of prestimulus and enhanced poststimulus gamma-oscillations were the same. In contrast to the 40-Hz response to click trains, phase-locking of gamma-oscillations by the single click stimulus was not observed. 6. These results suggest that both the MAEP complex and the steady-state 40-Hz response with its associated SP are highly stereotyped in lightly anesthetized rodent cortex. Their spatiotemporal distributions are probably determined in large part by asynchronous activation of parallel thalamocortical projection systems. Our data suggest no direct link between either the MAEP or the steady-state 40-Hz response to spontaneous or evoked gamma-band oscillations in auditory cortex.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 107 (3) ◽  
pp. 772-784 ◽  
Author(s):  
Nebojsa Kezunovic ◽  
James Hyde ◽  
Christen Simon ◽  
Francisco J. Urbano ◽  
D. Keith Williams ◽  
...  

The parafascicular nucleus (Pf) receives cholinergic input from the pedunculopontine nucleus, part of the reticular activating system involved in waking and rapid eye movement (REM) sleep, and sends projections to the cortex. We tested the hypothesis that Pf neurons fire maximally at gamma band frequency (30–90 Hz), that this mechanism involves high-threshold voltage-dependent P/Q- and N-type calcium channels, and that this activity is enhanced by the cholinergic agonist carbachol (CAR). Patch-clamped 9- to 25-day-old rat Pf neurons ( n = 299) manifested a firing frequency plateau at gamma band when maximally activated (31.5 ± 1.5 Hz) and showed gamma oscillations when voltage-clamped at holding potentials above −20 mV, and the frequency of the oscillations increased significantly with age (24.6 ± 3.8 vs. 51.6 ± 4.4 Hz, P < 0.001) but plateaued at gamma frequencies. Cells exposed to CAR showed significantly higher frequencies early in development compared with those without CAR (24.6 ± 3.8 vs. 41.7 ± 4.3 Hz, P < 0.001) but plateaued with age. The P/Q-type calcium channel blocker ω-agatoxin-IVA (ω-Aga) blocked gamma oscillations, whereas the N-type blocker ω-conotoxin-GVIA (ω-CgTx) only partially decreased the power spectrum amplitude of gamma oscillations. The blocking effect of ω-Aga on P/Q-type currents and ω-CgTx on N-type currents was consistent over age. We conclude that P/Q- and N-type calcium channels appear to mediate Pf gamma oscillations during development. We hypothesize that the cholinergic input to the Pf could activate these cells to oscillate at gamma frequency, and perhaps relay these rhythms to cortical areas, thus providing a stable high-frequency state for “nonspecific” thalamocortical processing.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Richard Hakim ◽  
Kiarash Shamardani ◽  
Hillel Adesnik

Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex.


2012 ◽  
Vol 24 (6) ◽  
pp. 1420-1433 ◽  
Author(s):  
Wataru Sato ◽  
Takanori Kochiyama ◽  
Shota Uono ◽  
Kazumi Matsuda ◽  
Keiko Usui ◽  
...  

Neuroimaging studies have reported greater activation of the human amygdala in response to faces than to nonfacial stimuli, yet little is known about the temporal profile of this activation. We investigated this issue by recording the intracranial field potentials of the amygdala in participants undergoing preneurosurgical assessment (n = 6). Participants observed faces, mosaics, and houses in upright and inverted orientations using a dummy target detection task. Time–frequency statistical parametric mapping analyses revealed that the amygdala showed greater gamma-band activity in response to faces than to mosaics at 200–300 msec, with a peak at 255 msec. Gamma-band activation with a similar temporal profile was also found in response to faces versus houses. Activation patterns did not differ between upright and inverted presentations of stimuli. These results suggest that the human amygdala is involved in the early stages of face processing, including the modulation of subjective perception of faces.


2019 ◽  
Author(s):  
Sarah Seger ◽  
Michael D. Rugg ◽  
Bradley C. Lega

AbstractA critical and emerging question in human episodic memory is how the hippocampus interacts with the prefrontal cortex during the encoding and retrieval of items and their contexts. In the present study, participants performed an episodic memory task (free recall) while intracranial electrodes were simultaneously inserted into the hippocampus and multiple prefrontal locations, allowing the quantification of relative onset times of gamma band activity in the cortex and the hippocampus in the same individual. We observed that in left anterior ventrolateral prefrontal cortex (aVLPFC) gamma band activity onset was significantly later than in the hippocampus during memory encoding, whereas its activity significantly preceded that in the hippocampus during memory retrieval. These findings provide direct evidence to support models of prefrontal-hippocampal interactions derived from studies of rodents, but suggest that in humans, it is the aVLPFC rather than medial prefrontal cortex that demonstrate these reciprocal interactions.


2007 ◽  
Vol 1300 ◽  
pp. 707-710 ◽  
Author(s):  
K. Maharajh ◽  
D. Abrams ◽  
D.C. Rojas ◽  
P. Teale ◽  
M.L. Reite

Author(s):  
Anastasia K Neklyudova ◽  
Galina V Portnova ◽  
Anna B Rebreikina ◽  
Victoria Yu Voinova ◽  
Olga V Sysoeva

SHANK3 encodes scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+inhibitory neurons &ndash; the key players in generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response(ASSR). Here we describe a clinical and neurophysiological phenotype of a 15-years old girl (SH01) with microduplication of 16389 bp in 22q13.33, affecting the SHANK3 gene in comparison to typically developing children (n=32). EEG were recorded during the binaurally presentation of 40-Hz clicks&rsquo; trains lasting for 500 ms with inter-trial intervals 500-800 ms. SH01 was diagnosed with mild mental retardation and learning disabilities(F70.88) and had problems with reading and writing, as well as smaller vocabulary than TD peers. Her clinical phenotype generally resembled the phenotype of previously described patients with 22q13.33 microduplication. SH01 had mild autistic symptoms but below the threshold for ASD diagnosis. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential(ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD&rsquo;s ASSR. Absence of 40-Hz ASSR in patient with microduplication, affected SHANK3 gene, indicates deficient temporal resolution of the auditory system, that might underlie language problems, and represent neurophysiological biomarker of SHANK3 abnormalities.


2008 ◽  
Vol 100 (3) ◽  
pp. 1265-1277 ◽  
Author(s):  
Bernhard Ross

Magnetoencephalographic responses to 40-Hz amplitude-modulated tones of 4-s duration were recorded in young, middle-aged, and older healthy participants. Interaural phase difference (IPD) in the sound carrier was changed during stimulus presentation from 0 to 180°, resulting in perceptual change from focal to spacious sound. The stimulus modulation elicited synchronized gamma-band oscillations, the 40-Hz auditory steady-state response (ASSR). Equivalent current dipoles were localized in primary auditory cortices. Waveforms of cortical activity showed a decrement in ASSR amplitude 100 ms after stimulus IPD change and modification of ASSR phase, which was maximally 90°, corresponding to 6-ms delay. Time courses of ASSR phase deviation constituted a novel auditory response. The amount of ASSR phase change decreased with increasing stimulus frequency and revealed upper limits for physiological IPD detection. Thresholds for IPD detection were found close to 1,500 Hz in the young, around 1,250 Hz in the middle-aged group, and around 1,000 Hz in the older group. Whereas the ASSR change response revealed aging-related decline of binaural hearing, the amplitude of 40-Hz response and the size of the ASSR change response were not affected by aging. Additional ASSR change responses were recorded at a high rate of stimulus changes every 400 ms. ASSR response detection at this rate was superior to response detection based on the auditory-evoked P1–N1–P2 response. Responses to changes from focal to spacious sound were larger than those in the reverse direction. The ASSRs were interpreted in relation to oscillatory gamma-band activity representing auditory object representation.


2011 ◽  
Vol 301 (2) ◽  
pp. C327-C335 ◽  
Author(s):  
Christen Simon ◽  
Nebojsa Kezunovic ◽  
D. Keith Williams ◽  
Francisco J. Urbano ◽  
E. Garcia-Rill

The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons ( n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35–80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range ( n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314) intracellularly ( n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR ( n = 4, P < 0.05), NMDA ( n = 4, P < 0.05) and KA ( n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD neurons.


Sign in / Sign up

Export Citation Format

Share Document