scholarly journals 3D reconstruction of genomic regions from sparse interaction data

2020 ◽  
Author(s):  
Julen Mendieta-Esteban ◽  
Marco Di Stefano ◽  
David Castillo ◽  
Irene Farabella ◽  
Marc A Marti-Renom

AbstractChromosome Conformation Capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterise short- and long-range enhancer-promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organisation from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalisation, detection of significant interactions, and reconstruction of the full 3D organisation of the genomic region despite of the data sparseness. Specifically, it produces reliable reconstructions, in line with the ones obtained from dense interaction matrices, with as low as the 2-3% of the data from the matrix. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organisational features such as the formation of different networks of active gene communities.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Julen Mendieta-Esteban ◽  
Marco Di Stefano ◽  
David Castillo ◽  
Irene Farabella ◽  
Marc A Marti-Renom

Abstract Chromosome conformation capture (3C) technologies measure the interaction frequency between pairs of chromatin regions within the nucleus in a cell or a population of cells. Some of these 3C technologies retrieve interactions involving non-contiguous sets of loci, resulting in sparse interaction matrices. One of such 3C technologies is Promoter Capture Hi-C (pcHi-C) that is tailored to probe only interactions involving gene promoters. As such, pcHi-C provides sparse interaction matrices that are suitable to characterize short- and long-range enhancer–promoter interactions. Here, we introduce a new method to reconstruct the chromatin structural (3D) organization from sparse 3C-based datasets such as pcHi-C. Our method allows for data normalization, detection of significant interactions and reconstruction of the full 3D organization of the genomic region despite of the data sparseness. Specifically, it builds, with as low as the 2–3% of the data from the matrix, reliable 3D models of similar accuracy of those based on dense interaction matrices. Furthermore, the method is sensitive enough to detect cell-type-specific 3D organizational features such as the formation of different networks of active gene communities.


2006 ◽  
Vol 5 (11) ◽  
pp. 1925-1933 ◽  
Author(s):  
Nobuyuki Morohashi ◽  
Yuichi Yamamoto ◽  
Shunsuke Kuwana ◽  
Wataru Morita ◽  
Heisaburo Shindo ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, a-cell-specific genes are repressed in MATα cells by α2/Mcm1, acting in concert with the Ssn6-Tup1 corepressors and the Isw2 chromatin remodeling complex, and nucleosome positioning has been proposed as one mechanism of repression. However, prior studies showed that nucleosome positioning is not essential for repression by α2/Mcm1 in artificial reporter plasmids, and the importance of the nucleosome positioning remains questionable. We have tested the function of positioned nucleosomes through alteration of genomic chromatin at the a-cell-specific gene BAR1. We report here that a positioned nucleosome in the BAR1 promoter is disrupted in cis by the insertion of diverse DNA sequences such as poly(dA) · poly(dT) and poly(dC-dG) · poly(dC-dG), leading to inappropriate partial derepression of BAR1. Also, we show that isw2 mutation causes loss of nucleosome positioning in BAR1 in MATα cells as well as partial disruption of repression. Thus, nucleosome positioning is required for full repression, but loss of nucleosome positioning is not sufficient to relieve repression completely. Even though disruption of nucleosome positioning by the cis- and trans-acting modulators of chromatin has a modest effect on the level of transcription, it causes significant degradation of the α-mating pheromone in MATα cells, thereby affecting its cell type identity. Our results illustrate a useful paradigm for analysis of chromatin structural effects at genomic loci.


2019 ◽  
Author(s):  
Paula Soler-Vila ◽  
Pol Cuscó Pons ◽  
Irene Farabella ◽  
Marco Di Stefano ◽  
Marc A. Marti-Renom

ABSTRACTThe rapid development of chromosome conformation capture (3C-based) techniques as well as super-resolution imaging together with bioinformatics analyses has been fundamental for unveiling that chromosomes are organized into the so-called topologically associating domains or TADs. While these TADs appear as nested patterns in the 3C-based interaction matrices, the vast majority of available computational methods are based on the hypothesis that TADs are individual and unrelated chromatin structures. Here we introduce TADpole, a computational tool designed to identify and analyze the entire hierarchy of TADs in intra-chromosomal interaction matrices. TADpole combines principal component analysis and constrained hierarchical clustering to provide an unsupervised set of significant partitions in a genomic region of interest. TADpole identification of domains is robust to the data resolution, normalization strategy, and sequencing depth. TADpole domain borders are enriched in CTCF and cohesin binding proteins, while the domains are enriched in either H3K36me3 or H3k27me3 histone marks. We show TADpole usefulness by applying it to capture Hi-C experiments in wild-type and mutant mouse strains to pinpoint statistically significant differences in their topological structure.


2021 ◽  
Author(s):  
Stefano Gnan ◽  
Joseph M. Josephides ◽  
Xia Wu ◽  
Manuela Spagnuolo ◽  
Dalila Saulebekova ◽  
...  

Mammalian genomes are replicated in a cell-type specific order and in coordination with transcription and chromatin organization. Although the field of replication is also entering the single-cell era, current studies require cell sorting, individual cell processing and have yielded a limited number (<100) of cells. Here, we have developed Kronos scRT (https://github.com/CL-CHEN-Lab/Kronos scRT), a software for single-cell Replication Timing (scRT) analysis. Kronos scRT does not require a specific platform nor cell sorting, allowing the investigation of large datasets obtained from asynchronous cells. Analysis of published available data and droplet-based scWGS data generated in the current study, allows exploitation of scRT data from thousands of cells for different mouse and human cell lines. Our results demonstrate that, although most cells replicate within a close timing range for a given genomic region, replication can also occur stochastically throughout S phase. Altogether, Kronos scRT allows investigating the RT program at a single-cell resolution for both homogeneous and heterogeneous cell populations in a fast and comprehensive manner.


2021 ◽  
Author(s):  
Taylor M. Lagler ◽  
Yuchen Yang ◽  
Yuriko Harigaya ◽  
Vijay G. Sankaran ◽  
Ming Hu ◽  
...  

Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type, and show enriched heritability of relevant blood cell trait(s). Importantly, this analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions.


2020 ◽  
Vol 48 (7) ◽  
pp. e39-e39
Author(s):  
Paula Soler-Vila ◽  
Pol Cuscó ◽  
Irene Farabella ◽  
Marco Di Stefano ◽  
Marc A Marti-Renom

Abstract The rapid development of Chromosome Conformation Capture (3C-based techniques), as well as imaging together with bioinformatics analyses, has been fundamental for unveiling that chromosomes are organized into the so-called topologically associating domains or TADs. While TADs appear as nested patterns in the 3C-based interaction matrices, the vast majority of available TAD callers are based on the hypothesis that TADs are individual and unrelated chromatin structures. Here we introduce TADpole, a computational tool designed to identify and analyze the entire hierarchy of TADs in intra-chromosomal interaction matrices. TADpole combines principal component analysis and constrained hierarchical clustering to provide a set of significant hierarchical chromatin levels in a genomic region of interest. TADpole is robust to data resolution, normalization strategy and sequencing depth. Domain borders defined by TADpole are enriched in main architectural proteins (CTCF and cohesin complex subunits) and in the histone mark H3K4me3, while their domain bodies, depending on their activation-state, are enriched in either H3K36me3 or H3K27me3, highlighting that TADpole is able to distinguish functional TAD units. Additionally, we demonstrate that TADpole's hierarchical annotation, together with the new DiffT score, allows for detecting significant topological differences on Capture Hi-C maps between wild-type and genetically engineered mouse.


2021 ◽  
Vol 7 (23) ◽  
pp. eabd9371
Author(s):  
Beatrice Biferali ◽  
Valeria Bianconi ◽  
Daniel Fernandez Perez ◽  
Sophie Pöhle Kronawitter ◽  
Fabrizia Marullo ◽  
...  

H3K9 methylation maintains cell identity orchestrating stable silencing and anchoring of alternate fate genes within the heterochromatic compartment underneath the nuclear lamina (NL). However, how cell type–specific genomic regions are specifically targeted to the NL is still elusive. Using fibro-adipogenic progenitors (FAPs) as a model, we identified Prdm16 as a nuclear envelope protein that anchors H3K9-methylated chromatin in a cell-specific manner. We show that Prdm16 mediates FAP developmental capacities by orchestrating lamina-associated domain organization and heterochromatin sequestration at the nuclear periphery. We found that Prdm16 localizes at the NL where it cooperates with the H3K9 methyltransferases G9a/GLP to mediate tethering and silencing of myogenic genes, thus repressing an alternative myogenic fate in FAPs. Genetic and pharmacological disruption of this repressive pathway confers to FAP myogenic competence, preventing fibro-adipogenic degeneration of dystrophic muscles. In summary, we reveal a druggable mechanism of heterochromatin perinuclear sequestration exploitable to reprogram FAPs in vivo.


2015 ◽  
Author(s):  
Mahfuza Sharmin ◽  
Hector Corrada Bravo ◽  
Sridhar S. Hannenhalli

Background. Large mega base-pair genomic regions show robust alterations in DNA methylation levels in multiple cancers, a vast majority of which are hypo-methylated in cancers. These regions are generally bounded by CpG islands, overlap with Lamin Associated Domains and Large organized chromatin lysine modifications, and are associated with stochastic variability in gene expression. Given the size and consistency of hypo-methylated blocks (HMB) across cancer types, their immediate causes are likely to be encoded in the genomic region near HMB boundaries, in terms of specific genomic or epigenomic signatures. However, a detailed characterization of the HMB boundaries has not been reported. Method. Here, we focused on ~13k HMBs, encompassing approximately half the genome, identified in colon cancer. We analyzed a number of distinguishing features at the HMB boundaries including transcription factor (TF) binding motifs, various epigenomic marks, and chromatin structural features. Result. We found that the classical promoter epigenomic mark, H3K4me3, is highly enriched at HMB boundaries, as are CTCF bound sites. HMB boundaries harbor distinct combinations of TF motifs. Our Random Forest model based on TF motifs can accurately distinguish boundaries not only from regions inside and outside HMBs, but surprisingly, from active promoters as well. Interestingly, the distinguishing TFs and their interacting proteins are involved in chromatin modification. Finally, HMB boundaries significantly coincide with the boundaries of Topologically Associating Domains of the chromatin. Conclusion. Our analyses suggest that the overall architecture of HMBs is guided by pre-existing chromatin architecture, and are associated with aberrant activity of promoter-like sequences at the boundary.


2019 ◽  
Vol 63 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Pui-Pik Law ◽  
Michelle L. Holland

Abstract DNA methylation is an epigenetic mark involved in regulating genome function and is critical for normal development in mammals. It has been observed that the developmental environment can lead to permanent changes in gene expression and DNA methylation, at least at ‘metastable epialleles’. These are defined as regions of the genome that show a variable epigenetic state that is established early in development and maintained through subsequent cell divisions. However, the majority of the known genome does not behave in this manner. Here, we use the developmental origins of adult disease hypothesis to understand environmental epigenomics. Some challenges to studying how DNA methylation is influenced by the environment include identifying DNA methylation changes associated with an environmental exposure in tissues with a complex cellular composition and at genomic regions for which DNA methylation is dynamically regulated in a cell-type specific manner. We also offer a perspective of how emerging technologies may be useful for dissecting the functional contribution of exposure-associated epigenetic changes and highlight recent evidence that suggests that genomic regions that are absent from genome assemblies may be unappreciated hotspots for environmental modulation of the epigenetic state.


Sign in / Sign up

Export Citation Format

Share Document