scholarly journals Structural impact on SARS-CoV-2 spike protein by D614G substitution

Author(s):  
Jun Zhang ◽  
Yongfei Cai ◽  
Tianshu Xiao ◽  
Jianming Lu ◽  
Hanqin Peng ◽  
...  

AbstractSubstitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing pandemic, appears to facilitate rapid viral spread. The G614 variant has now replaced the D614-carrying virus as the dominant circulating strain. We report here cryo-EM structures of a full-length S trimer carrying G614, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain (RBD). A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity. The loop transition may also modulate structural rearrangements of S protein required for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

Science ◽  
2021 ◽  
pp. eabf2303
Author(s):  
Jun Zhang ◽  
Yongfei Cai ◽  
Tianshu Xiao ◽  
Jianming Lu ◽  
Hanqin Peng ◽  
...  

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. We report here cryo-EM structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity, and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


2006 ◽  
Vol 80 (14) ◽  
pp. 6794-6800 ◽  
Author(s):  
Fang Li ◽  
Marcelo Berardi ◽  
Wenhui Li ◽  
Michael Farzan ◽  
Philip R. Dormitzer ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 724
Author(s):  
Paola Cristina Resende ◽  
Tiago Gräf ◽  
Anna Carolina Dias Paixão ◽  
Luciana Appolinario ◽  
Renata Serrano Lopes ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 109
Author(s):  
Xuhua Xia

The spike protein in SARS-CoV-2 (SARS-2-S) interacts with the human ACE2 receptor to gain entry into a cell to initiate infection. Both Pfizer/BioNTech’s BNT162b2 and Moderna’s mRNA-1273 vaccine candidates are based on stabilized mRNA encoding prefusion SARS-2-S that can be produced after the mRNA is delivered into the human cell and translated. SARS-2-S is cleaved into S1 and S2 subunits, with S1 serving the function of receptor-binding and S2 serving the function of membrane fusion. Here, I dissect in detail the various domains of SARS-2-S and their functions discovered through a variety of different experimental and theoretical approaches to build a foundation for a comprehensive mechanistic understanding of how SARS-2-S works to achieve its function of mediating cell entry and subsequent cell-to-cell transmission. The integration of structure and function of SARS-2-S in this review should enhance our understanding of the dynamic processes involving receptor binding, multiple cleavage events, membrane fusion, viral entry, as well as the emergence of new viral variants. I highlighted the relevance of structural domains and dynamics to vaccine development, and discussed reasons for the spike protein to be frequently featured in the conspiracy theory claiming that SARS-CoV-2 is artificially created.


Science ◽  
2020 ◽  
Vol 369 (6504) ◽  
pp. 650-655 ◽  
Author(s):  
Xiangyang Chi ◽  
Renhong Yan ◽  
Jun Zhang ◽  
Guanying Zhang ◽  
Yuanyuan Zhang ◽  
...  

Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs) from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal domain (NTD) of the S protein by determining with cryo–eletron microscopy its structure in complex with the S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.


2006 ◽  
Vol 80 (7) ◽  
pp. 3225-3237 ◽  
Author(s):  
Woan-Eng Chan ◽  
Chin-Kai Chuang ◽  
Shiou-Hwei Yeh ◽  
Mau-Sun Chang ◽  
Steve S.-L. Chen

ABSTRACT To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an α-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight SL form, while the wild type and all other mutants produced similar levels of both the SL form and the slower-migrating, higher-molecular-weight SH form. The wild-type SL form was processed to the SH form, whereas the SL form of the 913P mutant was inefficiently converted to the SH form after biosynthesis. None of these mutations affected cell surface expression or binding to its cognate ACE2 receptor. In a human immunodeficiency virus type 1/SARS S coexpression study, all mutants except the 913P mutant incorporated the SH form into the virions as effectively as did the wild-type SH form. The mutation at Ile-1151 did not affect membrane fusion or viral entry. The impaired viral entry of the 927P, 941P, 955P, and 1165P mutants was due to their inability to mediate membrane fusion, whereas the defect in viral entry of the 1179P mutant occurred not at the stage of membrane fusion but rather at a postfusion stage. Our study demonstrates the functional importance of HR1 and HR2 of the SARS-CoV spike protein in membrane fusion and viral entry.


2004 ◽  
Vol 50 (6) ◽  
pp. 1036-1042 ◽  
Author(s):  
Wai-Yan Choy ◽  
Shu-Guang Lin ◽  
Paul Kay-Sheung Chan ◽  
John Siu-Lun Tam ◽  
Y M Dennis Lo ◽  
...  

Abstract Background: The S (spike) protein of the etiologic coronavirus (CoV) agent of severe acute respiratory syndrome (SARS) plays a central role in mediating viral infection via receptor binding and membrane fusion between the virion and the host cell. We focused on using synthetic peptides for developing antibodies against SARS-CoV, which aimed to block viral invasion by eliciting an immune response specific to the native SARS-CoV S protein. Methods: Six peptide sequences corresponding to the surface regions of SARS-CoV S protein were designed and investigated by use of combined bioinformatics and structural analysis. These synthetic peptides were used to immunize both rabbits and monkeys. Antisera collected 1 week after the second immunization were analyzed by ELISA and tested for antibody specificity against SARS-CoV by immunofluorescent confocal microscopy. Results: Four of our six synthetic peptides (S2, S3, S5, and S6) elicited SARS-CoV-specific antibodies, of which S5 (residues 788–820) and S6 (residues 1002–1030) exhibited immunogenic responses similar to those found in a parallel investigation using truncated recombinant protein analogs of the SARS-CoV S protein. This suggested that our S5 and S6 peptides may represent two minimum biologically active sequences of the immunogenic regions of the SARS-CoV S protein. Conclusions: Synthetic peptides can elicit specific antibodies to SARS-CoV. The study provides insights for the future development of SARS vaccine via the synthetic-peptide-based approach.


2022 ◽  
Author(s):  
Jun Zhang ◽  
Yongfei Cai ◽  
Christy Lavine ◽  
Hanqin Peng ◽  
Haisun Zhu ◽  
...  

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein, but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


Sign in / Sign up

Export Citation Format

Share Document