scholarly journals Environmental conditions and diffusion-limited microbial transfer drive specific microbial communities detected at different sections in oil-production reservoir with water-flooding

2020 ◽  
Author(s):  
Peike Gao ◽  
Huimei Tian ◽  
Guoqiang Li ◽  
Feng Zhao ◽  
Wenjie Xia ◽  
...  

ABSTRACTThis study investigated the distribution of microbial communities in the oilfield production facilities of a water-flooding petroleum reservoir and the roles of environmental variation, microorganisms in injected water, and diffusion-limited microbial transfer in structuring the microbial communities. Similar bacterial communities were observed in surface water-injection facilities dominated by aerobic or facultative anaerobic Betaproteobacteria, Alphaproteobacteria, and Flavobacteria. Distinct bacterial communities were observed in downhole of the water-injection wells dominated by Clostridia, Deltaproteobacteria, Anaerolineae, and Synergistia, and in the oil-production wells dominated by Gammaproteobacteria, Betaproteobacteria, and Epsilonproteobacteria. Methanosaeta, Methanobacterium, and Methanolinea were dominant archaeal taxa in the water-injection facilities, while the oil-production wells were predominated by Methanosaeta, Methanomethylovorans, and Methanocalculus. Energy, nucleotide, translation, and glycan biosynthesis metabolisms were more active in the downhole of the water-injection wells, while bacterial chemotaxis, biofilm formation, two-component system, and xenobiotic biodegradation was associated with the oil-production wells. The number of shared OTUs and its positive correlation with formation permeability revealed differential diffusion-limited microbial transfer in oil-production facilities. The overall results indicate that environmental variation and microorganisms in injected water are the determinants that structure microbial communities in water-injection facilities, and the determinants in oil-bearing strata are environmental variation and diffusion-limited microbial transfer.IMPORTANCEWater-flooding continually inoculates petroleum reservoirs with exogenous microorganisms, nutrients, and oxygen. However, how this process influences the subsurface microbial community of the whole production process remains unclear. In this study, we investigated the spatial distribution of microbial communities in the oilfield production facilities of a water-flooding petroleum reservoir, and comprehensively illustrate the roles of environmental variation, microorganisms in injected water, and diffusion-limited microbial transfer in structuring the microbial communities. The results advance fundamental understanding on petroleum reservoir ecosystems that subjected to anthropogenic perturbations during oil production processes.

2016 ◽  
Vol 28 (1) ◽  
pp. 61-72
Author(s):  
Mohammad Amirul Islam ◽  
ASM Woobaidullah ◽  
Badrul Imam

Haripur field is the first oil producing field in Bangladesh. The field produced approximately 0.53 MMSTB of oil from the well No. SY-7. The oil production began in 1987 and terminated in 1994. All of the oil was produced by the reservoir own energy from the depth of 2030 meter. Recent investigation and study have revealed that approximately 31 MMSTB Oil is remaining in that formation as validated by the reservoir performance based study i.e. oil production rate and tube head pressure history matching. At present condition, the reservoir has no pressure energy to lift the oil to surface as it requires minimum 1500 psi pressure, so it needs pressure energy to lift the oil to surface. Among the recent developed technologies water injection is one of the best methods to sweep oil towards the production well from the injection well as well as to provide sufficient pressure for lifting. In this study we proposed design for optimum waterflooding pattern and defined optimum number of injection and production wells. In addition the production and injection rates are optimized along with selection of the best placement of production and injection wells and their life.Bangladesh J. Sci. Res. 28(1): 61-72, June-2015


2021 ◽  
Author(s):  
A. H. Surbakti

The Handil field is located in the Kutai Basin with an anticlinal structure consisting of a vertically stacked reservoirs deposited in a fluvial-deltaic environment. The field has been producing since 1974 under active aquifer drive followed by peripheral water injection which resulting in a high recovery factor of oil production. Cumulative oil production is more than 900 MMbbls and currently the field is still producing at 15000 bopd. The Handil Main zone is the main contributor that accounts for 60% of the Handil Field production and based on the results of new wells drilling, there is still potential of the remaining oil accumulations. Therefore, an integrated subsurface study is needed to further increase recovery in the Handil Main zone. This paper will discuss the process used to locate unswept oil in the high water cut reservoir to extend the water flood project. Waterflooding became an important part of the Handil’s development strategy to maximize oil recovery and to maintain oil reservoir pressure, as more and more fields are matured as part of their production life cycle. The main challenge is to identify area of unsweep oil that are affected by water injection activity. Understanding the reservoir behavior of the water injection sweep characteristic can significantly improve the understanding of the distribution of unswept oil in the reservoir. A robust integrated methodology was developed to identify unswept oil area by integrating Static- dynamic synthesis, 3D static model, production history, reservoir connectivity, recent well logs data and reservoir simulation. Multiple QC of oil sweet spot are done by comparing the sweet spot area of dynamic synthesis with reservoir simulation. Detailed well correlation were performed to identify the optimum water injector placement to improve the recovery factor. The results of the integrated dynamic synthesis are used to identify the sweet spot area and the optimum well injector location that will be used for the water flooding development project to be executed in 2022. The results of the study will sustain Mahakam production in the future.


2021 ◽  
Author(s):  
Babalola Daramola

Abstract This paper presents case studies of how produced water salinity data was used to transform the performance of two oil producing fields in Nigeria. Produced water salinity data was used to improve Field B’s reservoir simulation history match, generate infill drilling targets, and reinstate Field C’s oil production. A reservoir simulation study was unable to history match the water cut in 3 production wells in Field B. Water salinity data enabled the asset team to estimate the arrival time of injected sea water at each production well in oil field B. This improved the reservoir simulation history match, increased model confidence, and validated the simulation model for the placement of infill drilling targets. The asset team also gained additional insight on the existing water flood performance, transformed the water flooding strategy, and added 9.6 MMSTB oil reserves. The asset team at Field C was unable to recover oil production from a well after it died suddenly. The team evaluated water salinity data, which suggested scale build up in the well, and completed a bottom-hole camera survey to prove the diagnosis. This justified a scale clean-out workover, and added 5000 barrels per day of oil production. A case study of how injection tracer data was used to characterise a water injection short circuit in Field D is also presented. Methods of using produced water salinity and injection tracer data to manage base production and add significant value to petroleum fields are presented. Produced water salinity and injection tracer data also simplify water injection connectivity evaluations, and can be used to justify test pipeline and test separator installation for data acquisition.


2020 ◽  
Vol 11 ◽  
Author(s):  
Guoling Ren ◽  
Jinlong Wang ◽  
Lina Qu ◽  
Wei Li ◽  
Min Hu ◽  
...  

Polymer flooding technology and alkaline-surfactant-polymer (ASP) flooding technology have been widely used in some oil reservoirs. About 50% of remaining oil is trapped, however, in polymer-flooded and ASP-flooded reservoirs. How to further improve oil recovery of these reservoirs after chemical flooding is technically challenging. Microbial enhanced oil recovery (MEOR) technology is a promising alternative technology. However, the bacterial communities in the polymer-flooded and ASP-flooded reservoirs have rarely been investigated. We investigated the distribution and co-occurrence patterns of bacterial communities in ASP-flooded and polymer-flooded oil production wells. We found that Arcobacter and Pseudomonas were dominant both in the polymer-flooded and ASP-flooded production wells. Halomonas accounted for a large amount of the bacterial communities inhabiting in the ASP-flooded blocks, whereas they were hardly detected in the polymer-flooded blocks, and the trends for Acetomicrobium were the opposite. RDA analysis indicated that bacterial communities in ASP-flooded and polymer-flooded oil production wells are closely related to the physical and chemical properties, such as high salinity and strong alkaline, which together accounted for 56.91% of total variance. Co-occurrence network analysis revealed non-random combination patterns of bacterial composition from production wells of ASP-flooded and polymer-flooded blocks, and the ASP-flooded treatment decreased bacterial network complexity, suggesting that the application of ASP flooding technology reduced the tightness of bacterial interactions.


2015 ◽  
Vol 12 (11) ◽  
pp. 3403-3414 ◽  
Author(s):  
P. K. Gao ◽  
G. Q. Li ◽  
H. M. Tian ◽  
Y. S. Wang ◽  
H. W. Sun ◽  
...  

Abstract. Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Kobra Pourabdollah

The gradual decline in the oil production rate of water flooded reservoirs leads to decrease in the profit of water flooding system. Although cyclic water injection (CWI) was introduced to reduce the descending trend of oil production in water flooded reservoirs, it must be optimized based upon the process parameters. The objective of this study is to develop all process design criteria based upon the real-time monitoring of CWI process in a naturally fractured reservoir having five producing wells and five injector wells completed in an Arab carbonated formation containing light crude oil (API = 42 deg). For this aim, a small pilot oil field was selected with water injection facilities and naturally producing oil wells and all data were collected from the field tests. During a five years' field test, the primary observations at the onset of shutdown periods of the water injection system revealed a repeatable significant enhancement in oil production rate by a factor of plus 5% leading us to assess the application of CWI. This paper represents the significant parameters of pressure and productivity affected during CWI in naturally fractured carbonate reservoirs based upon a dual porosity generalized compositional model. The results hopefully introduce other oil producer companies to the potential of using CWI to increase oil production in conventional water injection systems. The results also outline situations where such applications would be desirable.


2012 ◽  
Vol 594-597 ◽  
pp. 2442-2445 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Ying Jia ◽  
Xiao Na Cui

Water injection is one of the important ways to maintain reservoir pressure and improving the oilfield development effect. And separate zone water injection is the main technology in water flooding oilfield. The optimal water intensity which has been allocated plays an important role in all kinds of reservoir. This paper proposed a method to optimize the water injection intensity based on oil production rate and water cut. Conceptual model was constructed on the basis of real reservoir. By numerical simulation, a chart board was derived which describes the relationship of water injection intensity versus oil production rate and water cut. Using this chart, we can determine the optimal water injection intensity on different oil production rate and water cut.


2017 ◽  
pp. 99-103 ◽  
Author(s):  
M. Ya. Habibullin ◽  
R. I. Suleymanov ◽  
L. Z. Zaynagalina ◽  
V. A. Petrov

In the block systems of water flooding the features of relative location of injection and production wells allow for the variety of options for changing the mode of operation (single, group, block, etc.). The greatest overall effect of the change in filtration velocity at the cutting line, and hence also the effect of pulsed non-stationary flooding, is achieved by alternate stopping of wells. The maximum distance between the injection wells, the mode of operation of which can be changed at the same time, is limited by the duration of the stop and subsequent water injection. Thus, if the duration of half cycles is the same, then this ratio is equal to two, that is the wells in a row should be stopped through one row.


2011 ◽  
Vol 38 (3) ◽  
pp. 352-361 ◽  
Author(s):  
Wang Tao ◽  
Yang Shenglai ◽  
Zhu Weihong ◽  
Bian Wanjiang ◽  
Liu Min ◽  
...  

2014 ◽  
Vol 41 (4) ◽  
pp. 665-678 ◽  
Author(s):  
Chuma Okoro ◽  
Seun Smith ◽  
Leo Chiejina ◽  
Rhea Lumactud ◽  
Dongshan An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document