scholarly journals Distinct expression of select and transcriptome-wide isolated 3’UTRs suggests critical roles in development and transition states

2020 ◽  
Author(s):  
Shaoyi Ji ◽  
Ze Yang ◽  
Leonardi Gozali ◽  
Thomas Kenney ◽  
Arif Kocabas ◽  
...  

AbstractMature mRNA molecules are typically considered to be comprised of a 5’UTR, a 3’UTR and a coding region (CDS), all attached until degradation. Unexpectedly, however, there have been multiple recent reports of widespread differential expression of mRNA 3’UTRs and their cognate coding regions, resulting in the expression of isolated 3’UTRs (i3’UTRs); these i3’UTRs can be highly expressed, often in reciprocal patterns to their cognate CDS. Similar to the role of other lncRNAs, isolated 3’UTRs are likely to play an important role in gene regulation but little is known about the contexts in which they are deployed. To begin to parse the functions of i3’UTRs, here we carry out in vitro, in vivo and in silico analyses of differential 3’UTR/CDS mRNA ratio usage across tissues, development and cell state changes both for a select list of developmentally important genes as well as through unbiased transcriptome-wide analyses. Across two developmental paradigms we find a distinct switch from high i3’UTR expression of stem cell related genes in proliferating cells compared to newly differentiated cells. Our unbiased transcriptome analysis across multiple gene sets shows that regardless of tissue, genes with high 3’UTR to CDS ratios belong predominantly to gene ontology categories related to cell-type specific functions while in contrast, the gene ontology categories of genes with low 3’UTR to CDS ratios are similar and relate to common cellular functions. In addition to these specific findings our data provide critical information from which detailed hypotheses for individual i3’UTRs can be tested-with a common theme that i3’UTRs appear poised to regulate cell-specific gene expression and state.Significance StatementThe widespread existence and expression of mRNA 3’ untranslated sequences in the absence of their cognate coding regions (called isolated 3’UTRs or i3’UTRs) opens up considerable avenues for gene regulation not previously envisioned. Each isolated 3’UTR may still bind and interact with micro RNAs, RNA binding proteins as well as other nucleic acid sequences, all in the absence or low levels of cognate protein production. Here we document the expression, localization and regulation of i3’UTRs both within particular biological systems as well as across the transcriptome. As this is an entirely new area of experimental investigation these early studies are seminal to this burgeoning field.

2021 ◽  
Author(s):  
Bohm Lee ◽  
Jinyoung Lee ◽  
Yewon Jeon ◽  
Hyemin Kim ◽  
Minjae Kwon ◽  
...  

AbstractGene expression profiling in response to nerve injury has been mainly focused on protein functions of coding genes to understand mechanisms of axon regeneration and to identify targets of potential therapeutics for nerve repair. However, the protein functions of several highly injury-induced genes including Gpr151 for regulating the regenerative ability remain unclear. Here we present an alternative approach focused on non-coding functions of the coding genes, which led to the identification of the non-coding function of Gpr151 RNA interacting with RNA-binding proteins such as CSDE1. Gpr151 promotes axon regeneration by the function of its 5’-untranslated region (5’UTR) and expression of an engineered form of the 5’UTR improves regenerative capacity in vitro and in vivo in both sciatic nerve and optic nerve injury models. Our data suggest that searching injury-induced coding genes potentially functioning by their non-coding regions is required for the RNA-based gene therapy for improving axon regeneration.


2021 ◽  
Author(s):  
Bohm Lee ◽  
Jinyoung Lee ◽  
Yewon Jeon ◽  
Hyemin Kim ◽  
Minjae Kwon ◽  
...  

Abstract Gene expression profiling in response to nerve injury has been mainly focused on protein functions of coding genes to understand mechanisms of axon regeneration and to identify targets of potential therapeutics for nerve repair. However, the protein functions of several highly injury-induced genes including Gpr151 for regulating the regenerative ability remain unclear. Here we present an alternative approach focused on non-coding functions of the coding genes, which led to the identification of the Gpr151 RNA function as a molecular sponge via its interaction with RNA-binding proteins such as CSDE1. Gpr151 promotes axon regeneration by the function of its 5’- untranslated region (5’UTR) and expression of an engineered form of the 5’UTR improves regenerative capacity in vitro and in vivo in both sciatic nerve and optic nerve injury models. Our data suggest that searching injury-induced coding genes potentially functioning by their non-coding regions is required for the RNA-based gene therapy for improving axon regeneration.


Author(s):  
Yi Zhang ◽  
Lian Liu ◽  
Qiongzi Qiu ◽  
Qing Zhou ◽  
Jinwang Ding ◽  
...  

AbstractOccurring in over 60% of human genes, alternative polyadenylation (APA) results in numerous transcripts with differing 3’ends, thus greatly expanding the diversity of mRNAs and of proteins derived from a single gene. As a key molecular mechanism, APA is involved in various gene regulation steps including mRNA maturation, mRNA stability, cellular RNA decay, and protein diversification. APA is frequently dysregulated in cancers leading to changes in oncogenes and tumor suppressor gene expressions. Recent studies have revealed various APA regulatory mechanisms that promote the development and progression of a number of human diseases, including cancer. Here, we provide an overview of four types of APA and their impacts on gene regulation. We focus particularly on the interaction of APA with microRNAs, RNA binding proteins and other related factors, the core pre-mRNA 3’end processing complex, and 3’UTR length change. We also describe next-generation sequencing methods and computational tools for use in poly(A) signal detection and APA repositories and databases. Finally, we summarize the current understanding of APA in cancer and provide our vision for future APA related research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xia Wang ◽  
Jin Wang ◽  
Yu-Man Tsui ◽  
Chaoran Shi ◽  
Ying Wang ◽  
...  

AbstractGrowing evidences suggest that cancer stem cells exhibit many molecular characteristics and phenotypes similar to their ancestral progenitor cells. In the present study, human embryonic stem cells are induced to differentiate into hepatocytes along hepatic lineages to mimic liver development in vitro. A liver progenitor specific gene, RALY RNA binding protein like (RALYL), is identified. RALYL expression is associated with poor prognosis, poor differentiation, and metastasis in clinical HCC patients. Functional studies reveal that RALYL could promote HCC tumorigenicity, self-renewal, chemoresistance, and metastasis. Moreover, molecular mechanism studies show that RALYL could upregulate TGF-β2 mRNA stability by decreasing N6-methyladenosine (m6A) modification. TGF-β signaling and the subsequent PI3K/AKT and STAT3 pathways, upregulated by RALYL, contribute to the enhancement of HCC stemness. Collectively, RALYL is a liver progenitor specific gene and regulates HCC stemness by sustaining TGF-β2 mRNA stability. These findings may inspire precise therapeutic strategies for HCC.


1991 ◽  
Vol 11 (2) ◽  
pp. 894-905
Author(s):  
R A Voelker ◽  
W Gibson ◽  
J P Graves ◽  
J F Sterling ◽  
M T Eisenberg

The nucleotide sequence of the Drosophila melanogaster suppressor of sable [su(s)] gene has been determined. Comparison of genomic and cDNA sequences indicates that an approximately 7,860-nucleotide primary transcript is processed into an approximately 5-kb message, expressed during all stages of the life cycle, that contains an open reading frame capable of encoding a 1,322-amino-acid protein of approximately 150 kDa. The putative protein contains an RNA recognition motif-like region and a highly charged arginine-, lysine-, serine-, aspartic or glutamic acid-rich region that is similar to a region contained in several RNA-processing proteins. In vitro translation of in vitro-transcribed RNA from a complete cDNA yields a product whose size agrees with the size predicted by the open reading frame. Antisera against su(s) fusion proteins recognize the in vitro-translated protein and detect a protein of identical size in the nuclear fractions from tissue culture cells and embryos. The protein is also present in smaller amounts in cytoplasmic fractions of embryos. That the su(s) protein has regions similar in structure to RNA-processing protein is consistent with its known role in affecting the transcript levels of those alleles that it suppresses.


2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101342
Author(s):  
Elena Nikonova ◽  
Amartya Mukherjee ◽  
Ketaki Kamble ◽  
Christiane Barz ◽  
Upendra Nongthomba ◽  
...  

Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila. Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type–specific gene and splice isoform expression, notably loss of an indirect flight muscle–specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3′-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type–specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type–specific splicing and expression dynamics of identity genes and structural proteins.


2019 ◽  
Author(s):  
Isabelle Leticia Zaboroski Silva ◽  
Anny Waloski Robert ◽  
Guillermo Cabrera Cabo ◽  
Lucia Spangenberg ◽  
Marco Augusto Stimamiglio ◽  
...  

AbstractPosttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA binding proteins (RBPs) that orchestrate the expression of these molecules. A family of RBPs, known as PUF (Pumilio-FBF), is highly conserved among species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first demonstrated the influence of the silencing of PUM1 and PUM2 on pluripotency genes. OCT4 and NANOG mRNA levels decreased significantly with the knockdown of Pumilio, suggesting that PUMILIO proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that the hESCs silenced for PUM1 and 2 exhibited an improvement in efficiency of in vitro cardiomyogenic differentiation. Using in silico analysis, we identified mRNA targets of PUM1 and PUM2 expressed during cardiomyogenesis. With the reduction of PUM1 and 2, these target mRNAs would be active and could be involved in the progression of cardiomyogenesis.


Sign in / Sign up

Export Citation Format

Share Document