scholarly journals Rbfox1 is required for myofibril development and maintaining fiber type–specific isoform expression in Drosophila muscles

2022 ◽  
Vol 5 (4) ◽  
pp. e202101342
Author(s):  
Elena Nikonova ◽  
Amartya Mukherjee ◽  
Ketaki Kamble ◽  
Christiane Barz ◽  
Upendra Nongthomba ◽  
...  

Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila. Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type–specific gene and splice isoform expression, notably loss of an indirect flight muscle–specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3′-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type–specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type–specific splicing and expression dynamics of identity genes and structural proteins.

2021 ◽  
Author(s):  
Elena Nikonova ◽  
Ketaki Kamble ◽  
Amartya Mukherjee ◽  
Christiane Barz ◽  
Upendra Nongthomba ◽  
...  

Protein isoform transitions confer distinct properties on muscle fibers and are regulated predominantly by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to control skeletal muscle function. However, the detailed mechanisms by which Rbfox1 contributes to normal muscle development and physiology remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila. Rbfox1 is differentially expressed in tubular and fibrillar muscle fiber types. RNAi knockdown of Rbfox1 leads to a loss of flight, climbing and jumping ability, as well as eclosion defects. Myofibers in knockdown muscle are frequently torn, and sarcomeres are hypercontracted. These defects arise from mis-regulation of fiber-type specific gene and splice isoform expression, notably loss of an IFM-specific isoform of Troponin-I that is critical for regulating myosin activity. We find that Rbfox1 influences mRNA transcript levels through 1) direct binding of 3'-UTRs of target transcripts as well as 2) through regulation of myogenic transcription factors, including Mef2, Exd and Salm. Moreover, Rbfox1 modulates splice isoform expression through 1) direct regulation of target splice events in structural genes and 2) regulation of the CELF-family RNA-binding protein Bruno1. Our data indicate that cross-regulatory interactions observed between FOX and CELF family RNA-binding proteins in vertebrates are conserved between their counterparts, Rbfox1 and Bruno1 in flies. Rbfox1 thus affects muscle development by regulation of both fiber-type specific gene and gene isoform expression dynamics of identity genes and structural proteins.


Author(s):  
Shao-Yen Kao ◽  
Elena Nikonova ◽  
Sabrina Chaabane ◽  
Albiona Sabani ◽  
Alexandra Martitz ◽  
...  

The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability between muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy, and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Interestingly, knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of Kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a useful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2505
Author(s):  
Shao-Yen Kao ◽  
Elena Nikonova ◽  
Sabrina Chaabane ◽  
Albiona Sabani ◽  
Alexandra Martitz ◽  
...  

The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.


2021 ◽  
pp. 1-6
Author(s):  
Miriam C. Aziz ◽  
Patricia N. Schneider ◽  
Gemma L. Carvill

Developmental and epileptic encephalopathies (DEEs) describe a subset of neurodevelopmental disorders categorized by refractory epilepsy that is often associated with intellectual disability and autism spectrum disorder. The majority of DEEs are now known to have a genetic basis with de novo coding variants accounting for the majority of cases. More recently, a small number of individuals have been identified with intronic <i>SCN1A</i> variants that result in alternative splicing events that lead to ectopic inclusion of poison exons (PEs). PEs are short highly conserved exons that contain a premature truncation codon, and when spliced into the transcript, lead to premature truncation and subsequent degradation by nonsense-mediated decay. The reason for the inclusion/exclusion of these PEs is not entirely clear, but research suggests an autoregulatory role in gene expression and protein abundance. This is seen in proteins such as RNA-binding proteins and serine/arginine-rich proteins. Recent studies have focused on targeting these PEs as a method for therapeutic intervention. Targeting PEs using antisense oligonucleotides (ASOs) has shown to be effective in modulating alternative splicing events by decreasing the amount of transcripts harboring PEs, thus increasing the abundance of full-length transcripts and thereby the amount of protein in haploinsufficient genes implicated in DEE. In the age of personalized medicine, cellular and animal models of the genetic epilepsies have become essential in developing and testing novel precision therapeutics, including PE-targeting ASOs in a subset of DEEs.


2020 ◽  
Author(s):  
Shaoyi Ji ◽  
Ze Yang ◽  
Leonardi Gozali ◽  
Thomas Kenney ◽  
Arif Kocabas ◽  
...  

AbstractMature mRNA molecules are typically considered to be comprised of a 5’UTR, a 3’UTR and a coding region (CDS), all attached until degradation. Unexpectedly, however, there have been multiple recent reports of widespread differential expression of mRNA 3’UTRs and their cognate coding regions, resulting in the expression of isolated 3’UTRs (i3’UTRs); these i3’UTRs can be highly expressed, often in reciprocal patterns to their cognate CDS. Similar to the role of other lncRNAs, isolated 3’UTRs are likely to play an important role in gene regulation but little is known about the contexts in which they are deployed. To begin to parse the functions of i3’UTRs, here we carry out in vitro, in vivo and in silico analyses of differential 3’UTR/CDS mRNA ratio usage across tissues, development and cell state changes both for a select list of developmentally important genes as well as through unbiased transcriptome-wide analyses. Across two developmental paradigms we find a distinct switch from high i3’UTR expression of stem cell related genes in proliferating cells compared to newly differentiated cells. Our unbiased transcriptome analysis across multiple gene sets shows that regardless of tissue, genes with high 3’UTR to CDS ratios belong predominantly to gene ontology categories related to cell-type specific functions while in contrast, the gene ontology categories of genes with low 3’UTR to CDS ratios are similar and relate to common cellular functions. In addition to these specific findings our data provide critical information from which detailed hypotheses for individual i3’UTRs can be tested-with a common theme that i3’UTRs appear poised to regulate cell-specific gene expression and state.Significance StatementThe widespread existence and expression of mRNA 3’ untranslated sequences in the absence of their cognate coding regions (called isolated 3’UTRs or i3’UTRs) opens up considerable avenues for gene regulation not previously envisioned. Each isolated 3’UTR may still bind and interact with micro RNAs, RNA binding proteins as well as other nucleic acid sequences, all in the absence or low levels of cognate protein production. Here we document the expression, localization and regulation of i3’UTRs both within particular biological systems as well as across the transcriptome. As this is an entirely new area of experimental investigation these early studies are seminal to this burgeoning field.


2016 ◽  
Vol 23 (5) ◽  
pp. 466-477 ◽  
Author(s):  
Enrique Lara-Pezzi ◽  
Manuel Desco ◽  
Alberto Gatto ◽  
María Victoria Gómez-Gaviro

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Motoaki Yanaizu ◽  
Chika Washizu ◽  
Nobuyuki Nukina ◽  
Jun-ichi Satoh ◽  
Yoshihiro Kino

Abstract Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Lizhen Chen ◽  
Zhijie Liu ◽  
Bing Zhou ◽  
Chaoliang Wei ◽  
Yu Zhou ◽  
...  

Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension.


Sign in / Sign up

Export Citation Format

Share Document