scholarly journals Direct Molecular Analysis of In Vivo and Freshly Excised Tissues in Human Surgeries with the MasSpec Pen Technology

Author(s):  
Jialing Zhang ◽  
Marta Sans ◽  
Rachel J. DeHoog ◽  
Kyana Y. Garza ◽  
Mary E. King ◽  
...  

Intraoperative tissue analysis is critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and intraoperative use of the MasSpec Pen technology for direct molecular analysis of in vivo and freshly excised tissues in the operating room. In this study, the MasSpec Pen was used by surgeons and surgical staff during 100 surgeries over a 12-month period, allowing rapid detection of rich mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. Collectively, this study shows that the MasSpec Pen system can be successfully incorporated into the operating room, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be inform surgical and clinical decisions without disrupting tissue analysis workflows.

2021 ◽  
Author(s):  
Aditi Sahu ◽  
Gary Peterson ◽  
Miguel Cordova ◽  
Yuna Oh ◽  
Cristian Navarrete-Dechent ◽  
...  

Abstract Conventional tissue sampling used in disease and cancer diagnosis can lead to misdiagnoses and repeated biopsies, and the tissue processed for histopathology suffers from poor nucleic acid quality/quantity for molecular profiling. Targeted micro-sampling of tissue can ensure accurate diagnosis and molecular profiling in the presence of spatial heterogeneity and complexity, especially in tumors, and facilitate acquisition of fresh tissue for molecular analysis. In this study, we explored the feasibility of a 1-mm precision biopsy approach guided by high-resolution reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) imaging, and reflective metallic grids for accurate spatial targeting and sampling in 7 skin cancers lesions in 6 patients. Accurate sampling was confirmed by histopathology or successful molecular profiling using next generation sequencing (NGS) approaches. Imaging guided 1-mm biopsy enabled spatial targeting and sampling for in vivo diagnosis, feature correlation and predicted depth as confirmed on histopathology. High DNA quantity (680 ng) and quality (DIN: 8) were obtained from imaging-guided high melanoma cell density areas. Subsequent mutational profiling on a 505-gene panel revealed a missense BRAF V600E oncogenic mutations at 0.02 allelic frequency for guiding therapy. Our findings demonstrate accurate sampling of regions of interest that enables downstream diagnosis, molecular analysis and research in both in vivo and ex vivo settings with broad diagnostic, therapeutic and research potential in dermatological and mucosal settings currently accessible to RCM-OCT imaging.


2003 ◽  
Vol 71 (12) ◽  
pp. 6871-6883 ◽  
Author(s):  
Richard C. Huard ◽  
Sadhana Chitale ◽  
Mary Leung ◽  
Luiz Claudio Oliveira Lazzarini ◽  
Hongxia Zhu ◽  
...  

ABSTRACT Human tuberculosis (TB) is caused by the bacillus Mycobacterium tuberculosis, a subspecies of the M. tuberculosis complex (MTC) of mycobacteria. Postgenomic dissection of the M. tuberculosis proteome is ongoing and critical to furthering our understanding of factors mediating M. tuberculosis pathobiology. Towards this end, a 32-kDa putative glyoxalase in the culture filtrate (CF) of growing M. tuberculosis (originally annotated as Rv0577 and hereafter designated CFP32) was identified, cloned, and characterized. The cfp32 gene is MTC restricted, and the gene product is expressed ex vivo as determined by the respective Southern and Western blot testing of an assortment of mycobacteria. Moreover, the cfp32 gene sequence is conserved within the MTC, as no polymorphisms were found in the tested cfp32 PCR products upon sequence analysis. Western blotting of M. tuberculosis subcellular fractions localized CFP32 predominantly to the CF and cytosolic compartments. Data to support the in vivo expression of CFP32 were provided by the serum recognition of recombinant CFP32 in 32% of TB patients by enzyme-linked immunosorbent assay (ELISA) as well as the direct detection of CFP32 by ELISA in the induced sputum samples from 56% of pulmonary TB patients. Of greatest interest was the observation that, per sample, sputum CFP32 levels (a potential indicator of increasing bacterial burden) correlated with levels of expression in sputum of interleukin-10 (an immunosuppressive cytokine and a putative contributing factor to disease progression) but not levels of gamma interferon (a key cytokine in the protective immune response in TB), as measured by ELISA. Combined, these data suggest that CFP32 serves a necessary biological function(s) in tubercle bacilli and may contribute to the M. tuberculosis pathogenic mechanism. Overall, CFP32 is an attractive target for drug and vaccine design as well as new diagnostic strategies.


Author(s):  
Nadim James Hallab ◽  
Lauryn Samelko ◽  
Dennis Hammond

Abstract Background While Breast Implants (BIs) have never been safer, factors such as implant debris may influence complications such as chronic inflammation and illness such as ALCL. Do different types of BIs produce differential particulate debris? Objectives Our objective was to quantify, investigate and characterize the size, amount, and material-type of both loosely bound and adherent surface particles, using five different surface types of commercial BIs. Methods Surface particles from 5 surface types of BIs (n=5/group); Biocell, Microcell, Siltex, Smooth, SmoothSilk, and Traditional-Smooth were: 1) removed by a rinsing procedure and 2) removed using ultrapure-adhesive carbon-tabs. Particles were characterized (ASTM 1877-16) using Scanning-Electron-Microscopy and EDX-chemical analysis. Results Particles rinsed from Biocell, Microcell and Siltex were <1 micron in diameter while SmoothSilk and Traditional-Smooth surfaces had median sizes >1micron (range: 0.4-2.7microns). The total mass of particles rinsed from the surfaces indicated Biocell had >5 fold-more particulate compared to all other implants, and >30 fold-more than SmoothSilk or Traditional-Smooth implants (>100x more for post rinse adhesion analysis). EDX analysis indicated particulate material for Biocell, Microcell and Siltex was silicone (>50%), while particulate from SmoothSilk and Traditional-Smooth implants were predominantly carbon-based polymers, eg, polycarbonate-urethane, consistent with packaging (and were detected on all implant types). Generally, SmoothSilk and Traditional-Smooth implant groups had >10x fewer particles released than Biocell, Microcell and Siltex surfaces. Pilot ex-vivo tissue analysis supported these findings. Conclusions Particulate debris released from BIs are highly dependent on the type of implant surface and is a likely key determinant of in vivo performance.


2017 ◽  
Vol 9 (406) ◽  
pp. eaan3968 ◽  
Author(s):  
Jialing Zhang ◽  
John Rector ◽  
John Q. Lin ◽  
Jonathan H. Young ◽  
Marta Sans ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4239-4239 ◽  
Author(s):  
Michael A Spinner ◽  
Alexey Aleshin ◽  
Marianne A Santaguida ◽  
Steven A Schaffert ◽  
Taher Abbasi ◽  
...  

Background Myelodysplastic syndrome (MDS) patients who are refractory to hypomethylating agents (HMAs) have a poor prognosis with median survival <6 months and few treatment options. A precision medicine approach is appealing in MDS given the biologic heterogeneity associated with the large variety of cytogenetic abnormalities and somatic mutations. We sought to determine whether a precision medicine approach combining molecular testing, ex vivo drug sensitivity screening (DSS), and in silico computational biology modeling (CBM) could be performed within an actionable timeframe (≤30 days) to allow for personalized treatment recommendations for patients with HMA-refractory MDS. Methods Study design: We performed a prospective feasibility study in 21 patients with HMA-refractory MDS enrolled at Stanford University from April 2018 through March 2019. All patients had a baseline bone marrow (BM) biopsy with BM aspirate and peripheral blood (PB) samples sent for mutation testing (596-gene panel, Tempus, Chicago, IL) and ex vivo DSS (Notable Labs, Foster City, CA). Ex vivo DSS: BM aspirate and PB specimens were RBC-lysed and re-suspended in serum-free media with cytokines. Samples were plated in 384-well microtiter plates and screened against FDA-approved and investigational drugs (up to 76) and drug combinations in triplicate. Specimens were treated for 72 hours and assayed using high-throughput, multi-parametic flow cytometry for cytotoxicity and differentiation (Blood 2016;128:5206). In silico CBM: Genomic data were input into a computational biology model (Cell Works Group, San Jose, CA) to generate protein network maps for each patient. Mathematical modeling of MDS cell proliferation or inhibition was simulated for each patient and used to calculate drug efficacy scores for numerous agents (Leuk Res 2017;52:1-7). Study endpoints: Once the gene panel, ex vivo DSS, and in silico CBM results were available, we (M.A.S., A.A., J.Z., P.L.G.) met for a molecular tumor board (MTB) to review the data and provide personalized treatment recommendations for each patient. The primary endpoint was the feasibility of providing personalized recommendations within an actionable timeframe (≤30 days). Secondary endpoints included concordance between the ex vivo and in silico assays and the accuracy of our MTB recommendations in predicting clinical responses in vivo. Results The median age of the patients was 76 years (range 55-87) and 71% were male. Seventeen patients had MDS, 3 had an MDS/MPN disorder, and 1 patient had progressed to AML. 76% had higher risk disease by IPSS-R, 57% had excess blasts, and 52% had adverse cytogenetics or mutations. Patients had a median of 2 pathogenic mutations (range 0-6) with the most common including TET2, ASXL1, STAG2, DNMT3A, RUNX1, and SRSF2. The median turnaround time for results of the gene panel, ex vivo DSS, and in silico CBM were 14.5, 15, and 20 days, respectively. The median turnaround time to our MTB was 27 days (range 20-32 days). MTB recommendations varied widely among patients and encompassed various drug classes including targeted therapies (venetoclax, sorafenib, lenalidomide, ruxolitinib, midostaurin, everolimus), cytotoxic agents (cytarabine, fludarabine), differentiative agents (calcitriol, ATRA), HMAs, and androgens (danazol) as single agents or in combination. The ex vivo and in silico assays were highly concordant, particularly in predicting sensitivity to HMAs and venetoclax. Eight patients received treatment per our MTB recommendations. Of these 8 patients, 6 (75%) responded to the recommended therapy and 2 (25%) had stable disease. Two responding patients were bridged to allogeneic hematopoietic cell transplantation (HCT). The remaining patients elected for best supportive care (N=5), hospice (N=3), other approved therapies (N=3), a clinical trial (N=1), or allogeneic HCT without bridging therapy (N=1). Conclusions We demonstrate the feasibility of a novel precision medicine approach for HMA-refractory MDS patients combining mutation data, ex vivo DSS, and in silico CBM to guide clinical therapeutic decisions within an actionable timeframe. Personalized treatment recommendations accurately predicted clinical responses in vivo and enabled some patients to be bridged to allogeneic HCT. Randomized prospective trials are needed to determine whether this approach may improve outcomes for patients with HMA-refractory MDS. Disclosures Aleshin: Notable Labs: Consultancy. Santaguida:Notable Labs: Employment. Schaffert:Notable Labs: Employment. Abbasi:Cell Works Group, Inc.: Employment. Patterson:Notable Labs: Employment. Heiser:Notable Labs: Employment. Greenberg:Notable Labs: Research Funding; Celgene: Research Funding; Genentech: Research Funding; H3 Biotech: Research Funding; Aprea: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees.


Author(s):  
J. D. Shelburne ◽  
Peter Ingram ◽  
Victor L. Roggli ◽  
Ann LeFurgey

At present most medical microprobe analysis is conducted on insoluble particulates such as asbestos fibers in lung tissue. Cryotechniques are not necessary for this type of specimen. Insoluble particulates can be processed conventionally. Nevertheless, it is important to emphasize that conventional processing is unacceptable for specimens in which electrolyte distributions in tissues are sought. It is necessary to flash-freeze in order to preserve the integrity of electrolyte distributions at the subcellular and cellular level. Ideally, biopsies should be flash-frozen in the operating room rather than being frozen several minutes later in a histology laboratory. Electrolytes will move during such a long delay. While flammable cryogens such as propane obviously cannot be used in an operating room, liquid nitrogen-cooled slam-freezing devices or guns may be permitted, and are the best way to achieve an artifact-free, accurate tissue sample which truly reflects the in vivo state. Unfortunately, the importance of cryofixation is often not understood. Investigators bring tissue samples fixed in glutaraldehyde to a microprobe laboratory with a request for microprobe analysis for electrolytes.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


Sign in / Sign up

Export Citation Format

Share Document