scholarly journals Increased visual and cognitive demands emphasize the importance of meeting visual needs at all distances while driving

Author(s):  
Amigale Patoine ◽  
Laura Mikula ◽  
Sergio Mejía-Romero ◽  
Jesse Michaels ◽  
Océane Keruzore ◽  
...  

ABSTRACTHaving an optimal quality of vision as well as adequate cognitive capacities is known to be essential for driving safety. However, the interaction between vision and cognitive mechanisms while driving remains unclear. We hypothesized that, in a context of high cognitive load, reduced visual acuity would have a negative impact on driving behavior, even when the acuity corresponds to the legal threshold for obtaining a driving license in Canada, and that the impact observed on driving performance would be greater with the increase in the threshold of degradation of visual acuity. In order to investigate this relationship, we examined driving behavior in a driving simulator under optimal and reduced vision conditions through two scenarios involving different levels of cognitive demand. These were: 1. a simple rural driving scenario with some pre-programmed events and 2. a highway driving scenario accompanied by a concurrent task involving the use of a navigation device. Two groups of visual quality degradation (lower/ higher) were evaluated according to their driving behavior. The results support the hypothesis: Driving behavior was less stable under reduced visual quality in the context of a high cognitive load and this effect was exacerbated when visual quality was more severely altered. These results support the idea that visual quality degradation impacts driving behavior when combined with a high mental workload driving environment while specifying that this impact is not present in the context of low cognitive load driving condition.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247254
Author(s):  
Amigale Patoine ◽  
Laura Mikula ◽  
Sergio Mejía-Romero ◽  
Jesse Michaels ◽  
Océane Keruzoré ◽  
...  

Having an optimal quality of vision as well as adequate cognitive capacities is known to be essential for driving safety. However, the interaction between vision and cognitive mechanisms while driving remains unclear. We hypothesized that, in a context of high cognitive load, reduced visual acuity would have a negative impact on driving behavior, even when the acuity corresponds to the legal threshold for obtaining a driving license in Canada, and that the impact observed on driving performance would be greater with the increase in the threshold of degradation of visual acuity. In order to investigate this relationship, we examined driving behavior in a driving simulator under optimal and reduced vision conditions through two scenarios involving different levels of cognitive demand. These were: 1. a simple rural driving scenario with some pre-programmed events and 2. a highway driving scenario accompanied by a concurrent task involving the use of a navigation device. Two groups of visual quality degradation (lower/ higher) were evaluated according to their driving behavior. The results support the hypothesis: A dual task effect was indeed observed provoking less stable driving behavior, but in addition to this, by statistically controlling the impact of cognitive load, the effect of visual load emerged in this dual task context. These results support the idea that visual quality degradation impacts driving behavior when combined with a high mental workload driving environment while specifying that this impact is not present in the context of low cognitive load driving condition.


2021 ◽  
Author(s):  
Mustafa Suhail Almallah ◽  
Shabna Sayed Mohammed ◽  
Qinaat Hussain ◽  
Wael K. M. Alhajyaseen

The illegal overtaking/crossing of stopped school buses has been identified as one of the leading causes of students’ injuries and fatalities. The likelihood of students in getting involved in a school bus-related crash increases during loading/unloading. The main objective of this driving simulator study was to study the effectiveness of different treatments in improving students’ safety by reducing the illegal overtaking/crossing of stopped school buses. Treatments used in this research are LED, Road Narrowing and Red Pavement. All proposed treatments were compared with the control condition (i.e., typical condition in the State of Qatar). Seventy-two subjects with valid Qatari driving license were invited to participate in this study. Each subject was exposed to three situations (i.e., Situation 1: the school bus is stopped in the same traveling direction, Situation 2: the school bus is stopped in the opposite traveling direction, Situation 3: the school bus is not present at the bus stop). Results showed that LED and Road Narrowing treatments were effective in reducing the illegal overtaking/crossing of stopped school buses. Moreover, the stopping behavior for drivers in LED and Road Narrowing was more consistent compared to the Red Pavement and control conditions. Finally, LED and Road Narrowing treatments motivated drivers to reduce their traveling speed by 5.16 km/h and 5.11 km/h, respectively, even with the absence of the school bus. Taking into account the results from this study, we recommend the proposed LED and Road Narrowing as potentially effective treatments to improve students’ safety at school bus stop locations.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Sooncheon Hwang ◽  
Sunhoon Kim ◽  
Dongmin Lee

There is currently much debate regarding the effectiveness of the driver license system in South Korea, due to the numerous traffic crashes caused by drivers who are suspected of having insufficient physical and mental abilities. Through the present system, it is quite difficult to identify such drivers indirectly through physical tests, such as visual acuity tests, since the correlation of such results with driving performance remains unclear. The objective of this study was to investigate the relationship between driving performance and visual acuities for improving the South Korean driver license system. In this study, two investigations were conducted: static and dynamic visual acuity examinations and driving performance tests based on a virtual reality (VR) system. The driving performance was evaluated with a driving simulator, based on driving behaviors in different experimental scenarios, including daytime and nighttime driving on a rural highway, and unexpected incident situations. Here, we produce statistically significant evidence that reduced visual acuity impairs driving performance, and driving behaviors differ significantly among groups with different vision capabilities, especially dynamic vision. Visual acuities, typically dynamic visual acuity, greatly influenced driving behavior, as measured by the standard deviation of speeds and vehicle LPs, and this was especially notable in curved road segments in daytime experiment. These experimental results revealed that the driving performance of participants with impaired dynamic visual acuity was deficient and unsafe. This confirmed that dynamic visual acuity levels are significant determinants of driving behavior, and they well explain driver performance levels. These findings suggest that the South Korean driver license system should include a test of dynamic visual acuity to create better and safer driving.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Toshihisa Sato ◽  
Motoyuki Akamatsu ◽  
Toru Shibata ◽  
Shingo Matsumoto ◽  
Naoki Hatakeyama ◽  
...  

We investigated the impact of deregulating the presence of stop signs at railway crossings on car driver behavior. We estimated the probability that a driver would stop inside the crossing, thereby obstructing the tracks, when a lead vehicle suddenly stopped after the crossing and a stop regulation was eliminated. We proposed a new assessment method of the driving behavior as follows: first, collecting driving behavior data in a driving simulator and in a real road environment; then, predicting the probability based on the collected data. In the simulator experiment, we measured the distances between a lead vehicle and the driver’s vehicle and the driver’s response time to the deceleration of the leading vehicle when entering the railway crossing. We investigated the influence of the presence of two leading vehicles on the driver’s vehicle movements. The deceleration data were recorded in the field experiments. Slower driving speed led to a higher probability of stopping inside the railway crossing. The probability was higher when the vehicle in front of the leading vehicle did not slow down than when both the lead vehicle and the vehicle in front of it slowed down. Finally, advantages of our new assessment method were discussed.


Geriatrics ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 80
Author(s):  
Michael Falkenstein ◽  
Melanie Karthaus ◽  
Ute Brüne-Cohrs

Due to demographic changes, the number of older drivers is steadily increasing. Mobility is highly relevant for leading an independent life in the elderly. It largely depends on car driving, which is a complex task requiring a multitude of cognitive and motor skills vulnerable to age- related functional deterioration. The almost inevitable effects of senescence may be potentiated by age-related diseases, such as stroke or diabetes mellitus. Respective pharmacological treatment may cause side effects, additionally affecting driving safety. The present article reviews the impact of age-related diseases and drug treatment of these conditions on driving fitness in elderly drivers. In essence, we focus on diseases of the visual and auditory systems, diseases of the central nervous system (i.e., stroke, depression, dementia and mild cognitive disorder, and Parkinson’s disease), sleep disorders, as well as cardiovascular diseases, diabetes mellitus, musculoskeletal disorders, and frailty. We will outline the role of functional tests and the assessment of driving behavior (by a driving simulator or in real traffic), as well as the clinical interview including questions about frequency of (near) accidents, etc. in the evaluation of driving fitness of the elderly. We also address the impact of polypharmacy on driving fitness and end up with recommendations for physicians caring for older patients.


Author(s):  
Edin Sabic ◽  
Jing Chen

Assistance driving systems aim to facilitate human behavior and increase safety on the road. These systems comprise common systems such as forward collision warning systems, lane deviation warning systems, and even park assistance systems. Warning systems can communicate with the driver through various modalities, but auditory warnings have the advantage of not further tasking visual resources that are primarily used for driving. Auditory warnings can also be presented from a certain location within the cab environment to be used by the driver as a cue. Beattie, Baillie, Halvey, and McCall (2014) assessed presenting warnings in stereo configuration, coming from one source, and bilateral configuration, panned fully from left or right, and found that drivers felt more in control with lateral warnings than stereo warnings when the car was in self-driving mode. Straughn, Gray, and Tan (2009) examined laterally presented auditory warnings to signal potential collisions. They found that the ideal presentation of warnings in either the avoidance direction, in which the driver should direct the car to avoid a collision, or the collision direction, in which the potential collision is located, was dependent on time to collision. Wang, Proctor, and Pick (2003) applied the stimulus-response compatibility principle to auditory warning design by using a steering wheel in a non-driving scenario and found that a tone presented monaurally in the avoidance-direction led to the fastest steering response. However, the reverse finding occurred when similar experiments utilized a driving simulator in a driving scenario (Straughn et al., 2009; Wang, Pick, Proctor, & Ye, 2007). The present study further investigated how to design spatially presented auditory collision warnings to facilitate drivers’ response to potential collisions. Specifically, tones indicating a pedestrian walking across the road were presented either in the avoidance direction or in the collision direction. The experimental task consisted of monitoring the road for potential collisions and turning the wheel in the appropriate direction to respond. Additionally, time to collision was manipulated to investigate the impact of the timing of the warning and increasing time pressure on the steering response. Time to collision was manipulated by half second intervals from two to four seconds resulting in five different time-to-collision scenarios. Lastly, the effect of individual differences in decision-making styles were also considered by using two decision-making style questionnaires. Results from the experiment showed that the presentation of a collision warning in the collision direction led to faster responses when compared to the warning in the avoidance direction. This result may be due to the collision warning directing the attention of the participant to the location of the threat so that they can more quickly make a response decision. Further, the advantage of avoidance-direction warnings over collision-direction warnings was greater with greater time to collision. Results showed that participant responses to varying time to collision influenced their reaction time. The participants appeared to have not relied solely on the auditory tones, but rather they utilized the warning tones in conjunction with visual information in the environment. These results from this study have implications for improving collision avoidance systems: Presentation of a collision warning in the direction of the collision may be more intuitive to drivers, regardless of time to collision.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanning Zhang ◽  
Zhongyin Guo ◽  
Zhi Sun

Driving simulation is an efficient, safe, and data-collection-friendly method to examine driving behavior in a controlled environment. However, the validity of a driving simulator is inconsistent when the type of the driving simulator or the driving scenario is different. The purpose of this research is to verify driving simulator validity in driving behavior research in work zones. A field experiment and a corresponding simulation experiment were conducted to collect behavioral data. Indicators such as speed, car-following distance, and reaction delay time were chosen to examine the absolute and relative validity of the driving simulator. In particular, a survival analysis method was proposed in this research to examine the validity of reaction delay time. The result indicates the following: (1) most indicators are valid in driving behavior research in the work zone. For example, spot speed, car-following distance, headway, and reaction delay time show absolute validity. (2) Standard deviation of the car-following distance shows relative validity. Consistent with previous researches, some driving behaviors appear to be more aggressive in the simulation environment.


Author(s):  
Sunbola Zatmeh-Kanj ◽  
Tomer Toledo

Microscopic simulation models have been widely used as tools to investigate the operation of traffic systems and different intelligent transportation systems applications. The fidelity of microscopic simulation tools depends on the driving behavior models that they implement. However, current models commonly do not consider human-related factors, such as distraction. The potential for distraction while driving has increased rapidly with the availability of smartphones and other connected and infotainment devices. Thus, an understanding of the impact of distraction on driving behavior is essential to improve the realism of microscopic traffic tools and support safety and other applications that are sensitive to it. This study focuses on car-following behavior in the context of distracting activities. The parameters of the well-known GM and intelligent driver models are estimated under various distraction scenarios using data collected with an experiment conducted in a driving simulator. The estimation results show that drivers are less sensitive to their leaders while talking on the phone and especially while texting. The estimated models are implemented in a microscopic traffic simulation model. The average speed, coefficient of variation of speed, acceleration noise and acceleration and deceleration time fractions were used as measures of performance indicating traffic flow and safety implications. The simulation results show deterioration of traffic flow with texting and to some extent talking on the phone: average speeds are lower and the coefficient of variation of speeds are higher. Further experimentation with varying fractions of texting drivers showed similar trends.


Sign in / Sign up

Export Citation Format

Share Document