scholarly journals Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity

2020 ◽  
Author(s):  
Andreas Anastasiou ◽  
Ivor Cribben ◽  
Piotr Fryzlewicz

Evidence of the non stationary behavior of functional connectivity (FC) networks has been observed in task based functional magnetic resonance imaging (fMRI) experiments and even prominently in resting state fMRI data. This has led to the development of several new statistical methods for estimating this time-varying connectivity, with the majority of the methods utilizing a sliding window approach. While computationally feasible, the sliding window approach has several limitations. In this paper, we circumvent the sliding window, by introducing a statistical method that finds change-points in FC networks where the number and location of change-points are unknown a priori. The new method, called cross-covariance isolate detect (CCID), detects multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. CCID allows for change-point detection in the presence of frequent changes of possibly small magnitudes, can assign change-points to one or multiple brain regions, and is computationally fast. In addition, CCID is particularly suited to task based data, where the subject alternates between task and rest, as it firstly attempts isolation of each of the change-points within subintervals, and secondly their detection therein. Furthermore, we also propose a new information criterion for CCID to identify the change-points. We apply CCID to several simulated data sets and to task based and resting state fMRI data and compare it to recent change-point methods. CCID is also applicable to electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. Similar to other biological networks, understanding the complex network organization and functional dynamics of the brain can lead to profound clinical implications. Finally, the R package ccid implementing the method from the paper is available from GitHub.

2021 ◽  
Author(s):  
Xin Xiong ◽  
Ivor Cribben

To estimate dynamic functional connectivity for functional magnetic resonance imaging (fMRI) data, two approaches have dominated: sliding window and change point methods. While computationally feasible, the sliding window approach has several limitations. In addition, the existing change point methods assume a Gaussian distribution for and linear dependencies between the fMRI time series. In this work, we introduce a new methodology called Vine Copula Change Point (VCCP) to estimate change points in the functional connectivity network structure between brain regions. It uses vine copulas, various state-of-the-art segmentation methods to identify multiple change points, and a likelihood ratio test or the stationary bootstrap for inference. The vine copulas allow for various forms of dependence between brain regions including tail, symmetric and asymmetric dependence, which has not been explored before in the analysis of neuroimaging data. We apply VCCP to various simulation data sets and to two fMRI data sets: a reading task and an anxiety inducing experiment. In particular, for the former data set, we illustrate the complexity of textual changes during the reading of Chapter 9 in Harry Potter and the Sorcerer's Stone and find that change points across subjects are related to changes in more than one type of textual attributes. Further, the graphs created by the vine copulas indicate the importance of working beyond Gaussianity and linear dependence. Finally, the R package vccp implementing the methodology from the paper is available from CRAN.


2020 ◽  
Vol 20 (3) ◽  
pp. 200-212
Author(s):  
Núria Mancho-Fora ◽  
Marc Montalà-Flaquer ◽  
Laia Farràs-Permanyer ◽  
Daniel Zarabozo-Hurtado ◽  
Geisa Bearitz Gallardo-Moreno ◽  
...  

2018 ◽  
Author(s):  
Jonathan F. O’Rawe ◽  
Jaime S. Ide ◽  
Hoi-Chung Leung

AbstractIn accordance with the concept of topographic organization of neuroanatomical structures, there is an increased interest in estimating and delineating continuous changes in the functional connectivity patterns across neighboring voxels within a region of interest using resting-state fMRI data. Fundamental to this functional connectivity gradient analysis is the assumption that the functional organization is stable and uniform across the region of interest. To evaluate this assumption, we developed a model testing procedure to arbitrate between overlapping, shifted, or different topographic connectivity gradients across subdivisions of a structure. We tested the procedure using the striatum, a subcortical structure consisting of the caudate nucleus and putamen, in which an extensive literature, primarily from rodents and non-human primates, suggest to have a shared topographic organization of a single diagonal gradient. We found, across multiple resting state fMRI data samples of different spatial resolutions in humans, and one macaque resting state fMRI data sample, that the models with different functional connectivity gradients across the caudate and putamen was the preferred model. The model selection procedure was validated in control conditions of checkerboard subdivisions, demonstrating the expected overlapping gradient. More specifically, while we replicated the diagonal organization of the functional connectivity gradients in both the caudate and putamen, our analysis also revealed a medial-lateral organization within the caudate. Not surprisingly, performing the same analysis assuming a unitary gradient obfuscates the medial-lateral organization of the caudate, producing only a diagonal gradient. These findings demonstrate the importance of testing basic assumptions and evaluating interpretations across species. The significance of differential topographic gradients across the putamen and caudate and the medial-lateral gradient of the caudate in humans should be tested in future studies.


2020 ◽  
Author(s):  
Arun S. Mahadevan ◽  
Ursula A. Tooley ◽  
Maxwell A. Bertolero ◽  
Allyson P. Mackey ◽  
Danielle S. Bassett

AbstractFunctional connectivity (FC) networks are typically inferred from resting-state fMRI data using the Pearson correlation between BOLD time series from pairs of brain regions. However, alternative methods of estimating functional connectivity have not been systematically tested for their sensitivity or robustness to head motion artifact. Here, we evaluate the sensitivity of six different functional connectivity measures to motion artifact using resting-state data from the Human Connectome Project. We report that FC estimated using full correlation has a relatively high residual distance-dependent relationship with motion compared to partial correlation, coherence and information theory-based measures, even after implementing rigorous methods for motion artifact mitigation. This disadvantage of full correlation, however, may be offset by higher test-retest reliability and system identifiability. FC estimated by partial correlation offers the best of both worlds, with low sensitivity to motion artifact and intermediate system identifiability, with the caveat of low test-retest reliability. We highlight spatial differences in the sub-networks affected by motion with different FC metrics. Further, we report that intra-network edges in the default mode and retrosplenial temporal sub-networks are highly correlated with motion in all FC methods. Our findings indicate that the method of estimating functional connectivity is an important consideration in resting-state fMRI studies and must be chosen carefully based on the parameters of the study.


2020 ◽  
Vol 124 (6) ◽  
pp. 1900-1913
Author(s):  
Justine C. Cléry ◽  
Yuki Hori ◽  
David J. Schaeffer ◽  
Joseph S. Gati ◽  
J. Andrew Pruszynski ◽  
...  

We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2 using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.


NeuroImage ◽  
2019 ◽  
Vol 185 ◽  
pp. 102-110 ◽  
Author(s):  
Jonathan F. O'Rawe ◽  
Jaime S. Ide ◽  
Hoi-Chung Leung

Sign in / Sign up

Export Citation Format

Share Document