scholarly journals Fast end-to-end learning on protein surfaces

2020 ◽  
Author(s):  
Freyr Sverrisson ◽  
Jean Feydy ◽  
Bruno E. Correia ◽  
Michael M. Bronstein

AbstractProteins’ biological functions are defined by the geometric and chemical structure of their 3D molecular surfaces. Recent works have shown that geometric deep learning can be used on mesh-based representations of proteins to identify potential functional sites, such as binding targets for potential drugs. Unfortunately though, the use of meshes as the underlying representation for protein structure has multiple drawbacks including the need to pre-compute the input features and mesh connectivities. This becomes a bottleneck for many important tasks in protein science.In this paper, we present a new framework for deep learning on protein structures that addresses these limitations. Among the key advantages of our method are the computation and sampling of the molecular surface on-the-fly from the underlying atomic point cloud and a novel efficient geometric convolutional layer. As a result, we are able to process large collections of proteins in an end-to-end fashion, taking as the sole input the raw 3D coordinates and chemical types of their atoms, eliminating the need for any hand-crafted pre-computed features.To showcase the performance of our approach, we test it on two tasks in the field of protein structural bioinformatics: the identification of interaction sites and the prediction of protein-protein interactions. On both tasks, we achieve state-of-the-art performance with much faster run times and fewer parameters than previous models. These results will considerably ease the deployment of deep learning methods in protein science and open the door for end-to-end differentiable approaches in protein modeling tasks such as function prediction and design.

2021 ◽  
Author(s):  
Jimin Pei ◽  
Jing Zhang ◽  
Qian Cong

AbstractRecent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3-dimensional protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions and modeling protein complexes at the proteome level. We applied RoseTTAFold and AlphaFold2, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death, and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to the modeling of the complex structures by AlphaFold2, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most of the top ranked pairs with high contact probability were supported by known protein-protein interactions and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2, ECSIT-NDUFAF1 and COQ7-COQ9, among others. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pan Wang ◽  
Guiyang Zhang ◽  
Zu-Guo Yu ◽  
Guohua Huang

Knowledge about protein-protein interactions is beneficial in understanding cellular mechanisms. Protein-protein interactions are usually determined according to their protein-protein interaction sites. Due to the limitations of current techniques, it is still a challenging task to detect protein-protein interaction sites. In this article, we presented a method based on deep learning and XGBoost (called DeepPPISP-XGB) for predicting protein-protein interaction sites. The deep learning model served as a feature extractor to remove redundant information from protein sequences. The Extreme Gradient Boosting algorithm was used to construct a classifier for predicting protein-protein interaction sites. The DeepPPISP-XGB achieved the following results: area under the receiver operating characteristic curve of 0.681, a recall of 0.624, and area under the precision-recall curve of 0.339, being competitive with the state-of-the-art methods. We also validated the positive role of global features in predicting protein-protein interaction sites.


2020 ◽  
Vol 27 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Cheng Shi ◽  
Jiaxing Chen ◽  
Xinyue Kang ◽  
Guiling Zhao ◽  
Xingzhen Lao ◽  
...  

: Protein-related interaction prediction is critical to understanding life processes, biological functions, and mechanisms of drug action. Experimental methods used to determine proteinrelated interactions have always been costly and inefficient. In recent years, advances in biological and medical technology have provided us with explosive biological and physiological data, and deep learning-based algorithms have shown great promise in extracting features and learning patterns from complex data. At present, deep learning in protein research has emerged. In this review, we provide an introductory overview of the deep neural network theory and its unique properties. Mainly focused on the application of this technology in protein-related interactions prediction over the past five years, including protein-protein interactions prediction, protein-RNA\DNA, Protein– drug interactions prediction, and others. Finally, we discuss some of the challenges that deep learning currently faces.


2020 ◽  
Vol 20 (10) ◽  
pp. 855-882
Author(s):  
Olivia Slater ◽  
Bethany Miller ◽  
Maria Kontoyianni

Drug discovery has focused on the paradigm “one drug, one target” for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leon Harrington ◽  
Jordan M. Fletcher ◽  
Tamara Heermann ◽  
Derek N. Woolfson ◽  
Petra Schwille

AbstractModules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a ‘cargo’ molecule reversibly to a permanent membrane ‘anchor’; and (ii) creating a ‘membrane-avidity switch’ that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


2020 ◽  
Author(s):  
Atilio O. Rausch ◽  
Maria I. Freiberger ◽  
Cesar O. Leonetti ◽  
Diego M. Luna ◽  
Leandro G. Radusky ◽  
...  

Once folded natural protein molecules have few energetic conflicts within their polypeptide chains. Many protein structures do however contain regions where energetic conflicts remain after folding, i.e. they have highly frustrated regions. These regions, kept in place over evolutionary and physiological timescales, are related to several functional aspects of natural proteins such as protein-protein interactions, small ligand recognition, catalytic sites and allostery. Here we present FrustratometeR, an R package that easily computes local energetic frustration on a personal computer or a cluster. This package facilitates large scale analysis of local frustration, point mutants and MD trajectories, allowing straightforward integration of local frustration analysis in to pipelines for protein structural analysis.Availability and implementation: https://github.com/proteinphysiologylab/frustratometeR


Sign in / Sign up

Export Citation Format

Share Document