scholarly journals Cryo-EM Structures of the N501Y SARS-CoV-2 Spike Protein in Complex with ACE2 and Two Potent Neutralizing Antibodies

Author(s):  
Xing Zhu ◽  
Dhiraj Mannar ◽  
Shanti S. Srivastava ◽  
Alison M. Berezuk ◽  
Jean-Philippe Demers ◽  
...  

AbstractThe recently reported “UK variant” of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. We present a 2.9-Å resolution cryo-EM structure of the complex between the ACE2 receptor and N501Y spike protein ectodomains that shows Y501 inserted into a cavity at the binding interface near Y41 of ACE2. The additional interactions result in increased affinity of ACE2 for the N501Y mutant, accounting for its increased infectivity. However, this mutation does not result in large structural changes, enabling important neutralization epitopes to be retained in the spike receptor binding domain. We confirmed this through biophysical assays and by determining cryo-EM structures of spike protein ectodomains bound to two representative potent neutralizing antibody fragments.Short summaryThe N501Y mutation found in the coronavirus UK variant increases infectivity but some neutralizing antibodies can still bind.

PLoS Biology ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. e3001237
Author(s):  
Xing Zhu ◽  
Dhiraj Mannar ◽  
Shanti S. Srivastava ◽  
Alison M. Berezuk ◽  
Jean-Philippe Demers ◽  
...  

The recently reported “UK variant” (B.1.1.7) of SARS-CoV-2 is thought to be more infectious than previously circulating strains as a result of several changes, including the N501Y mutation. We present a 2.9-Å resolution cryo-electron microscopy (cryo-EM) structure of the complex between the ACE2 receptor and N501Y spike protein ectodomains that shows Y501 inserted into a cavity at the binding interface near Y41 of ACE2. This additional interaction provides a structural explanation for the increased ACE2 affinity of the N501Y mutant, and likely contributes to its increased infectivity. However, this mutation does not result in large structural changes, enabling important neutralization epitopes to be retained in the spike receptor binding domain. We confirmed this through biophysical assays and by determining cryo-EM structures of spike protein ectodomains bound to 2 representative potent neutralizing antibody fragments.


Author(s):  
Colby T. Ford ◽  
Denis Jacob Machado ◽  
Daniel A. Janies

The genome of the SARS-CoV-2 Omicron variant (B.1.1.529) was released on November 22, 2021, which has caused a flurry of media attention due the large number of mutations it contains. These raw data have spurred questions around vaccine efficacy. Given that neither the structural information nor the experimentally-derived antibody interaction of this variant are available, we have turned to predictive computational methods to model the mutated structure of the spike protein’s receptor binding domain and posit potential changes to vaccine efficacy. In this study, we predict some structural changes in the receptor-binding domain that may reduce antibody interaction, but no drastic changes that would completely evade existing neutralizing antibodies (and therefore current vaccines).


Author(s):  
Andre Watson ◽  
Leonardo Ferreira ◽  
Peter Hwang ◽  
Jinbo Xu ◽  
Robert Stroud

ABSTRACTThe design of an immunogenic scaffold that serves a role in treating a pathogen, and can be rapidly and predictively modeled, has remained an elusive feat. Here, we demonstrate that SARS-BLOCK™ synthetic peptide scaffolds act as antidotes to SARS-CoV-2 spike protein-mediated infection of human ACE2-expressing cells. Critically, SARS-BLOCK™ peptides are able to potently and competitively inhibit SARS-CoV-2 S1 spike protein receptor binding domain (RBD) binding to ACE2, the main cellular entry pathway for SARS-CoV-2, while also binding to neutralizing antibodies against SARS-CoV-2. In order to create this potential therapeutic antidote-vaccine, we designed, simulated, synthesized, modeled epitopes, predicted peptide folding, and characterized behavior of a novel set of synthetic peptides. The biomimetic technology is modeled off the receptor binding motif of the SARS-CoV-2 coronavirus, and modified to provide enhanced stability and folding versus the truncated wildtype sequence. These novel peptides attain single-micromolar binding affinities for ACE2 and a neutralizing antibody against the SARS-CoV-2 receptor binding domain (RBD), and demonstrate significant reduction of infection in nanomolar doses. We also demonstrate that soluble ACE2 abrogates binding of RBD to neutralizing antibodies, which we posit is an essential immune-evasive mechanism of the virus. SARS-BLOCK™ is designed to “uncloak” the viral ACE2 coating mechanism, while also binding to neutralizing antibodies with the intention of stimulating a specific neutralizing antibody response. Our peptide scaffolds demonstrate promise for future studies evaluating specificity and sensitivity of immune responses to our antidote-vaccine. In summary, SARS-BLOCK™ peptides are a promising COVID-19 antidote designed to combine the benefits of a therapeutic and vaccine, effectively creating a new generation of prophylactic and reactive antiviral therapeutics whereby immune responses can be enhanced rather than blunted.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2020 ◽  
Vol 56 (61) ◽  
pp. 8683-8686 ◽  
Author(s):  
Xiaoxiao Qi ◽  
Bixia Ke ◽  
Qian Feng ◽  
Deying Yang ◽  
Qinghai Lian ◽  
...  

Herein, we report that a recombinant fusion protein, containing a 457 amino acid SARS-CoV-2 receptor binding domain and a mouse IgG1 Fc domain, could induce highly potent neutralizing antibodies and stimulate humoral and cellular immunity in mice.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Cong Wang ◽  
Chen Hua ◽  
Shuai Xia ◽  
Weihua Li ◽  
Lu Lu ◽  
...  

Middle East respiratory syndrome coronavirus (MERS-CoV) has continuously posed a threat to public health worldwide, yet no therapeutics or vaccines are currently available to prevent or treat MERS-CoV infection. We previously identified a fusion inhibitory peptide (HR2P-M2) targeting the MERS-CoV S2 protein HR1 domain and a highly potent neutralizing monoclonal antibody (m336) specific to the S1 spike protein receptor-binding domain (RBD). However, m336 was found to have reduced efficacy against MERS-CoV strains with mutations in RBD, and HR2P-M2 showed low potency, thus limiting the clinical application of each when administered separately. However, we herein report that the combination of m336 and HR2P-M2 exhibited potent synergism in inhibiting MERS-CoV S protein-mediated cell–cell fusion and infection by MERS-CoV pseudoviruses with or without mutations in the RBD, resulting in the enhancement of antiviral activity in contrast to either one administered alone. Thus, this combinatorial strategy could be used in clinics for the urgent treatment of MERS-CoV-infected patients.


2021 ◽  
Author(s):  
Yuko Nitahara ◽  
Yu Nakagama ◽  
Natsuko Kaku ◽  
Katherine Candray ◽  
Yu Michimuko ◽  
...  

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine facilitated population immunity, which shall become more dominant than natural infection-induced immunity. At the beginning of the vaccine era, the initial epitope profile in naive individuals will be the first step to build an optimal host defense system towards vaccine-based population immunity. In this study, the high-resolution linear epitope profiles between Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the RBD than that induced by the natural infection. The relatively lower neutralizing antibody titers observed in vaccine-induced sera could attribute to less efficient epitope selection and maturation of the vaccine-induced humoral immunity compared to the infection-induced. Furthermore, additional mutation panel assays showed that the vaccine-induced rich epitope variety targeting the RBD may aid antibodies to escape rapid viral evolution, which could grant an advantage to the vaccine immunity.


Sign in / Sign up

Export Citation Format

Share Document