scholarly journals Phototrophy and carbon fixation in Chlorobi postdate the rise of oxygen

2021 ◽  
Author(s):  
LM Ward ◽  
PM Shih

AbstractWhile most productivity on the surface of the Earth today is fueled by oxygenic photosynthesis, during the early parts of Earth history it is thought that anoxygenic photosynthesis—using compounds like ferrous iron or sulfide as electron donors—drove most global carbon fixation. Anoxygenic photosynthesis is still performed by diverse bacteria in niche environments today. Of these, the Chlorobi (formerly green sulfur bacteria) are often interpreted as being particularly ancient and are frequently proposed to have fueled the biosphere early in Earth history before the rise of oxygenic photosynthesis. Here, we perform comparative genomic, phylogenetic, and molecular clock analyses to determine the antiquity of the Chlorobi and their characteristic phenotypes. We show that contrary to common assumptions, the Chlorobi clade is relatively young, with anoxygenic phototrophy, carbon fixation via the rTCA pathway, and iron oxidation all significantly postdating the rise of oxygen ~2.3 billion years ago. The Chlorobi therefore could not have fueled the Archean biosphere, but instead represent a relatively young radiation of organisms which likely acquired the capacity for anoxygenic photosynthesis and other traits via horizontal gene transfer sometime after the evolution of oxygenic Cyanobacteria.

2019 ◽  
Author(s):  
Petra Pjevac ◽  
Stefan Dyksma ◽  
Tobias Goldhammer ◽  
Izabela Mujakić ◽  
Michal Koblížek ◽  
...  

AbstractSulfide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulfidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labeling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photo pigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations toin situinorganic carbon fixation in environmental samples. This allowed us to assign 89.3 ±7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulfur bacteria (dominated byChlorobium phaeobacteroides), whereas the co-occurring purple sulfur bacteria (Halochromatiumsp.) contributed only 1.8 ±1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulfur bacteria and one of a purple sulfur bacterium which provides the first genomic insights into the genusHalochromatium, confirming its high metabolic flexibility and physiological potential for mixo-and heterotrophic growth.


2020 ◽  
Vol 117 (30) ◽  
pp. 17599-17606 ◽  
Author(s):  
Xingqian Cui ◽  
Xiao-Lei Liu ◽  
Gaozhong Shen ◽  
Jian Ma ◽  
Fatima Husain ◽  
...  

Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39and C38carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic–Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.


2005 ◽  
Vol 34 (2) ◽  
pp. 271-280 ◽  
Author(s):  
N. Mallorquí ◽  
J.B. Arellano ◽  
C.M. Borrego ◽  
L.J. Garcia-Gil

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Jacob M. Hilzinger ◽  
Vidhyavathi Raman ◽  
Kevin E. Shuman ◽  
Brian J. Eddie ◽  
Thomas E. Hanson

ABSTRACT The green sulfur bacteria ( Chlorobiaceae ) are anaerobes that use electrons from reduced sulfur compounds (sulfide, S 0 , and thiosulfate) as electron donors for photoautotrophic growth. Chlorobaculum tepidum , the model system for the Chlorobiaceae , both produces and consumes extracellular S 0 globules depending on the availability of sulfide in the environment. These physiological changes imply significant changes in gene regulation, which has been observed when sulfide is added to Cba. tepidum growing on thiosulfate. However, the underlying mechanisms driving these gene expression changes, i.e., the specific regulators and promoter elements involved, have not yet been defined. Here, differential RNA sequencing (dRNA-seq) was used to globally identify transcript start sites (TSS) that were present during growth on sulfide, biogenic S 0 , and thiosulfate as sole electron donors. TSS positions were used in combination with RNA-seq data from cultures growing on these same electron donors to identify both basal promoter elements and motifs associated with electron donor-dependent transcriptional regulation. These motifs were conserved across homologous Chlorobiaceae promoters. Two lines of evidence suggest that sulfide-mediated repression is the dominant regulatory mode in Cba. tepidum . First, motifs associated with genes regulated by sulfide overlap key basal promoter elements. Second, deletion of the Cba. tepidum 1277 ( CT1277 ) gene, encoding a putative regulatory protein, leads to constitutive overexpression of the sulfide:quinone oxidoreductase CT1087 in the absence of sulfide. The results suggest that sulfide is the master regulator of sulfur metabolism in Cba. tepidum and the Chlorobiaceae . Finally, the identification of basal promoter elements with differing strengths will further the development of synthetic biology in Cba. tepidum and perhaps other Chlorobiaceae . IMPORTANCE Elemental sulfur is a key intermediate in biogeochemical sulfur cycling. The photoautotrophic green sulfur bacterium Chlorobaculum tepidum either produces or consumes elemental sulfur depending on the availability of sulfide in the environment. Our results reveal transcriptional dynamics of Chlorobaculum tepidum on elemental sulfur and increase our understanding of the mechanisms of transcriptional regulation governing growth on different reduced sulfur compounds. This report identifies genes and sequence motifs that likely play significant roles in the production and consumption of elemental sulfur. Beyond this focused impact, this report paves the way for the development of synthetic biology in Chlorobaculum tepidum and other Chlorobiaceae by providing a comprehensive identification of promoter elements for control of gene expression, a key element of strain engineering.


2010 ◽  
Vol 484 (4-6) ◽  
pp. 333-337 ◽  
Author(s):  
Hitoshi Tamiaki ◽  
Shingo Tateishi ◽  
Shosuke Nakabayashi ◽  
Yutaka Shibata ◽  
Shigeru Itoh

2013 ◽  
Vol 118 (3) ◽  
pp. 231-247 ◽  
Author(s):  
Sándor Á. Kovács ◽  
William P. Bricker ◽  
Dariusz M. Niedzwiedzki ◽  
Peter F. Colletti ◽  
Cynthia S. Lo

Sign in / Sign up

Export Citation Format

Share Document