scholarly journals Disentangling adaptation from drift in bottlenecked and reintroduced populations of Alpine ibex

2021 ◽  
Author(s):  
D.M. Leigh ◽  
H.E.L. Lischer ◽  
F. Guillaume ◽  
C. Grossen ◽  
T. Günther

AbstractIdentifying local adaptation in bottlenecked species is essential for effective conservation management. Selection detection methods are often applied to bottlenecked species and have an important role in species management plans, assessments of the species’ adaptive capacity, and looking for responses to major threats like climate change. Yet, the allele frequency changes driven by selection and exploited in selection detection methods, are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods may offer within bottlenecked populations. In this study, we used simulations to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). We used the meticulously recorded demographic history of the Alpine ibex to generate a comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in putative outliers identified through selection scans on empirical Alpine ibex SNP data. Within the simulated dataset, the false positive rates were high for all selection detection methods but fell substantially when two or more selection detection methods were combined. However, the true positive rates were consistently low and became essentially negligible after this increased stringency. Despite the detection of many putative outlier loci in the empirical Alpine ibex RADseq data, none met the threshold needed to distinguish them from genetic drift-driven false positives. Unfortunately, the low true positive rate also creates a paradox, by preventing the exclusion of recent local adaptation within the Alpine ibex.

Author(s):  
Deborah Leigh ◽  
Heidi Lischer ◽  
Frédéric Guillaume ◽  
Christine Grossen ◽  
Torsten Günther

Identifying local adaptation in bottlenecked species is essential for conservation management. Selection detection methods have an important role in species management plans, assessments of adaptive capacity, and looking for responses to climate change. Yet, the allele frequency changes exploited in selection detection methods are similar to those caused by the strong neutral genetic drift expected during a bottleneck. Consequently, it is often unclear what accuracy selection detection methods have across bottlenecked populations. In this study, simulations were used to explore if signals of selection could be confidently distinguished from genetic drift across 23 bottlenecked and reintroduced populations of Alpine ibex (Capra ibex). The meticulously recorded demographic history of the Alpine ibex was used to generate comprehensive simulated SNP data. The simulated SNPs were then used to benchmark the confidence we could place in outliers identified in empirical Alpine ibex SNP data. Within the simulated dataset, the false positive rates were high for all selection detection methods but fell substantially when two or more methods were combined. True positive rates were consistently low and became negligible with increased stringency. Despite finding many outlier loci in the empirical Alpine ibex SNPs, none could be distinguished from genetic drift-driven false positives. Unfortunately, the low true positive rate also prevents the exclusion of recent local adaptation within the Alpine ibex. The baselines and stringent approach outlined here should be applied to other bottlenecked species to ensure the risk of false positive, or negative, signals of selection are accounted for in conservation management plans.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 166
Author(s):  
Jakub T. Wilk ◽  
Beata Bąk ◽  
Piotr Artiemjew ◽  
Jerzy Wilde ◽  
Maciej Siuda

Honeybee workers have a specific smell depending on the age of workers and the biological status of the colony. Laboratory tests were carried out at the Department of Apiculture at UWM Olsztyn, using gas sensors installed in two twin prototype multi-sensor detectors. The study aimed to compare the responses of sensors to the odor of old worker bees (3–6 weeks old), young ones (0–1 days old), and those from long-term queenless colonies. From the experimental colonies, 10 samples of 100 workers were taken for each group and placed successively in the research chambers for the duration of the study. Old workers came from outer nest combs, young workers from hatching out brood in an incubator, and laying worker bees from long-term queenless colonies from brood combs (with laying worker bee’s eggs, humped brood, and drones). Each probe was measured for 10 min, and then immediately for another 10 min ambient air was given to regenerate sensors. The results were analyzed using 10 different classifiers. Research has shown that the devices can distinguish between the biological status of bees. The effectiveness of distinguishing between classes, determined by the parameters of accuracy balanced and true positive rate, of 0.763 and 0.742 in the case of the best euclidean.1nn classifier, may be satisfactory in the context of practical beekeeping. Depending on the environment accompanying the tested objects (a type of insert in the test chamber), the introduction of other classifiers as well as baseline correction methods may be considered, while the selection of the appropriate classifier for the task may be of great importance for the effectiveness of the classification.


2012 ◽  
Vol 195-196 ◽  
pp. 402-406
Author(s):  
Xue Qin Chen ◽  
Rui Ping Wang

Classify the electrocardiogram (ECG) into different pathophysiological categories is a complex pattern recognition task which has been tried in lots of methods. This paper will discuss a method of principal component analysis (PCA) in exacting the heartbeat features, and a new method of classification that is to calculate the error between the testing heartbeat and reconstructed heartbeat. Training and testing heartbeat is taken from the MIT-BIH Arrhythmia Database, in which 8 types of arrhythmia signals are selected in this paper. The true positive rate (TPR) is 83%.


Author(s):  
Ian Alberts ◽  
Jan-Niklas Hünermund ◽  
Christos Sachpekidis ◽  
Clemens Mingels ◽  
Viktor Fech ◽  
...  

Abstract Objective To investigate the impact of digital PET/CT on diagnostic certainty, patient-based sensitivity and interrater reliability. Methods Four physicians retrospectively evaluated two matched cohorts of patients undergoing [68Ga]Ga-PSMA-11 PET/CT on a digital (dPET/CT n = 65) or an analogue scanner (aPET/CT n = 65) for recurrent prostate cancer between 11/2018 and 03/2019. The number of equivocal and pathological lesions as well as the frequency of discrepant findings and the interrater reliability for the two scanners were compared. Results dPET/CT detected more lesions than aPET/CT (p < 0.001). A higher number of pathological scans were observed for dPET/CT (83% vs. 57%, p < 0.001). The true-positive rate at follow-up was 100% for dPET/CT compared to 84% for aPET/CT (p < 0.001). The proportion of lesions rated as non-pathological as a total of all PSMA-avid lesions detected for dPET/CT was comparable to aPET/CT (61.8% vs. 57.0%, p = 0.99). Neither a higher rate of diagnostically uncertain lesions (11.5% dPET/CT vs. 13.7% aPET/CT, p = 0.95) nor discrepant scans (where one or more readers differed in opinion as to whether the scan is pathological) were observed (18% dPET/CT vs. 17% aPET/CT, p = 0.76). Interrater reliability for pathological lesions was excellent for both scanner types (Cronbach’s α = 0.923 dPET/CT; α = 0.948 aPET/CT) and interrater agreement was substantial for dPET/CT (Krippendorf’s α = 0.701) and almost perfect in aPET/CT (α = 0.802). Conclusions A higher detection rate for pathological lesions for dPET/CT compared with aPET/CT in multiple readers was observed. This improved sensitivity was coupled with an improved true-positive rate and was not associated with increased diagnostic uncertainty, rate of non-specific lesions, or reduced interrater reliability. Key Points • New generation digital scanners detect more cancer lesions in men with prostate cancer. • When using digital scanners, the doctors are able to diagnose prostate cancer lesions with better certainty • When using digital scanners, the doctors do not disagree with each other more than with other scanner types.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4237 ◽  
Author(s):  
Yu-Xin Yang ◽  
Chang Wen ◽  
Kai Xie ◽  
Fang-Qing Wen ◽  
Guan-Qun Sheng ◽  
...  

In order to solve the problem of face recognition in complex environments being vulnerable to illumination change, object rotation, occlusion, and so on, which leads to the imprecision of target position, a face recognition algorithm with multi-feature fusion is proposed. This study presents a new robust face-matching method named SR-CNN, combining the rotation-invariant texture feature (RITF) vector, the scale-invariant feature transform (SIFT) vector, and the convolution neural network (CNN). Furthermore, a graphics processing unit (GPU) is used to parallelize the model for an optimal computational performance. The Labeled Faces in the Wild (LFW) database and self-collection face database were selected for experiments. It turns out that the true positive rate is improved by 10.97–13.24% and the acceleration ratio (the ratio between central processing unit (CPU) operation time and GPU time) is 5–6 times for the LFW face database. For the self-collection, the true positive rate increased by 12.65–15.31%, and the acceleration ratio improved by a factor of 6–7.


Author(s):  
Katarzyna Bozek ◽  
Laetitia Hebert ◽  
Yoann Portugal ◽  
Greg J. Stephens

AbstractWe present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt a convolutional neural network (CNN) segmentation architecture to automatically identify bee and brood cell positions, body orientations and within-cell states. We achieve high accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate > 90%) and demonstrate months-long monitoring of sociometric colony fluctuations. We combine extracted positions with rich visual features of organism-centered images to track individuals over time and through challenging occluding events, recovering ~79% of bee trajectories from five observation hives over a span of 5 minutes. The resulting trajectories reveal important behaviors, including fast motion, comb-cell activity, and waggle dances. Our results provide new opportunities for the quantitative study of collective bee behavior and for advancing tracking techniques of crowded systems.


2020 ◽  
Author(s):  
Enikő Szép ◽  
Himani Sachdeva ◽  
Nick Barton

AbstractThis paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.


Sign in / Sign up

Export Citation Format

Share Document