scholarly journals Spatial spread of white-nose syndrome in North America, 2006-2018

2021 ◽  
Author(s):  
Andrew M. Kramer ◽  
Alex Mercier ◽  
Sean Maher ◽  
Yaw Kumi-Ansu ◽  
Sarah Bowden ◽  
...  

AbstractWhite-nose syndrome has caused massive mortality in multiple bat species and spread across much of North America, making it one of the most destructive wildlife diseases on record. This has also resulted in it being one of the most well-documented wildlife disease outbreaks, making it possible to look for changes in the pattern of spatial spread over time. We fit a series of spatial interaction models to the United States county-level observations of the pathogenic fungus, Pseudogymnoascus destructans, that causes white-nose syndrome. Models included the distance between caves, cave abundance, measures of winter length and winter onset, and species richness of all bats and hibernating bats only. We found that the best supported models included all of these factors, but that the particular structure and most informative covariates changed over the course of the outbreak, with winter length displacing winter onset as the most informative measure of winter conditions, and evidence for the effects total species richness and hibernation varying from year to year. We also found that weather had detectable effects on spread. While the effect sizes for cave abundance and species richness were relatively stable over the length of the outbreak, distance became less important as time went on. These findings indicate that although models produced early in the outbreak captured important and consistent aspects of the spatial spread of white-nose syndrome, there were also changes over time in the factors associated with spread, suggesting that forecasts may be improved by iterative model refinement.

2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Adrian Forsythe ◽  
Victoria Giglio ◽  
Jonathan Asa ◽  
Jianping Xu

ABSTRACTWhite-nose syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungusPseudogymnoascus destructans. Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains was investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of time. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion.IMPORTANCEThe causal agent of white-nose syndrome in bats isPseudogymnoascus destructans, a filamentous fungus recently introduced from its native range in Europe. Infections caused byP. destructanshave progressed across the eastern parts of Canada and the United States over the last 10 years. It is not clear how the disease is spread, as the pathogen is unable to grow above 23°C and ambient temperature can act as a barrier when hosts disperse. Here, we explore the patterns of phenotypic diversity and the germination of the fungal asexual spores, arthroconidia, from strains across a sizeable area of the epizootic range. Our analyses revealed evidence of adaptation along geographic gradients during its expansion. The results have implications for understanding the diversification ofP. destructansand the limits of WNS spread in North America. Given the rapidly expanding distribution of WNS, a detailed understanding of the genetic bases for phenotypic variations in growth, reproduction, and dispersal ofP. destructansis urgently needed to help control this disease.


2019 ◽  
Author(s):  
Lav Sharma ◽  
Márcia Sousa ◽  
Ana S. Faria ◽  
Margarida Nunes-Pereira ◽  
João A. Cabral ◽  
...  

AbstractPseudogymnoascus destructans (Pd), the emergent fungus causing bat “White-Nose Syndrome”, responsible for ∼6 million mortalities in the United States (US), is thought to expand clonally in North America and Europe. Presence of distinct mating-types in Europe led to numerous research attempts searching for population sexuality worldwide. This study not only presents the first evidence of genetic recombination in Pd but also detects recombination in Pd genotype data generated by previous studies in Europe and North America, through clone-corrected linkage disequilibrium analysis. Portuguese and other European populations are apparently reproducing through sex between two mating-types. Seeming parasexual recombination in the invasive single mating-type US population rings alarms for the North American bat populations and deserves urgent attention. This study emphasizes on clone-correction in linkage disequilibrium analysis.One Sentence SummaryClone-correction yielded signs of elusive recombination in the global “clonal” populations of white-nose syndrome pathogen.


2018 ◽  
Vol 399 (12) ◽  
pp. 1375-1388 ◽  
Author(s):  
Chapman Beekman ◽  
Zhenze Jiang ◽  
Brian M. Suzuki ◽  
Jonathan M. Palmer ◽  
Daniel L. Lindner ◽  
...  

Abstract Pseudogymnoascus destructans is a pathogenic fungus responsible for White-nose Syndrome (WNS), a disease afflicting multiple species of North American bats. Pseudogymnoascus destructans infects susceptible bats during hibernation, invading dermal tissue and causing extensive tissue damage. In contrast, other Pseudogymnoascus species are non-pathogenic and cross-species comparisons may therefore reveal factors that contribute to virulence. In this study, we compared the secretome of P. destructans with that from several closely related Pseudogymnoascus species. A diverse set of hydrolytic enzymes were identified, including a putative serine peptidase, PdCP1, that was unique to the P. destructans secretome. A recombinant form of PdCP1 was purified and substrate preference determined using a multiplexed-substrate profiling method based on enzymatic degradation of a synthetic peptide library and analysis by mass spectrometry. Most peptide substrates were sequentially truncated from the carboxyl-terminus revealing that this enzyme is a bona fide carboxypeptidase. Peptides with arginine located close to the carboxyl-terminus were rapidly cleaved, and a fluorescent substrate containing arginine was therefore used to characterize PdCP1 activity and to screen a selection of peptidase inhibitors. Antipain and leupeptin were found to be the most potent inhibitors of PdCP1 activity.


2014 ◽  
Vol 9 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Konrad Sachanowicz ◽  
Arkadiusz Stępień ◽  
Mateusz Ciechanowski

AbstractPseudogymnoascus destructans (Pd), a parasitic fungus (being responsible for a disease known as white-nose syndrome, WNS) that caused mass mortality of cave-dwelling, hibernating bats in North America, appears to be native of Europe, where it also occurs on wintering bats, but no similar outbreaks of WNS have been recorded. Herein, we provide the first account on prevalence and phenology of P. destructans in Poland. Bats were counted once per month, from October or January to May (2010-2013), in an abandoned ore mine in southern Poland. Presence of P. destructans in two samples was confirmed by sequencing of isolated fungal DNA. Observations of phenotypically identical mycosis on bats hibernating at this site in March 2006 are likely to be the first known records of P. destructans from Poland. All Pd-suspected individuals were Myotis myotis with an exception of one Myotis daubentonii. The first Pd-suspected bats were noted in mid-February, but their number was the highest in March, what overlapped with maximum numbers of hibernating M. myotis. The prevalence in March was 7%–27% of M. myotis individuals. No mass mortality of bats was observed in the mine, with only three dead individuals found in the hibernaculum which hosted up to 130 bats, representing 6–7 species.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 665 ◽  
Author(s):  
Vishnu Chaturvedi ◽  
Holland DeFiglio ◽  
Sudha Chaturvedi

Background: Pseudogymnoascus destructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results: P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen compounds (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous compounds and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans was compatible with in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Kevin P. Drees ◽  
Jeffrey M. Lorch ◽  
Sebastien J. Puechmaille ◽  
Katy L. Parise ◽  
Gudrun Wibbelt ◽  
...  

ABSTRACT Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans , a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans . Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans , uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.


2020 ◽  
Author(s):  
Melissa B. Meierhofer ◽  
Thomas M. Lilley ◽  
Lasse Ruokolainen ◽  
Joseph S. Johnson ◽  
Steven Parratt ◽  
...  

AbstractPredicting the emergence and spread of infectious diseases is critical for effective conservation of biodiversity. White-nose syndrome (WNS), an emerging infectious disease of bats, has resulted in high mortality in eastern North America. Because the fungal causative agent Pseudogymnoascus destructans is constrained by temperature and humidity, spread dynamics may vary greatly by geography. Environmental conditions in the southern part of the continent, where disease dynamics are typically studied, making it difficult to predict how the disease will manifest. Herein, we modeled the spread of WNS in Texas based on available cave densities and average dispersal distances of species occupying these sites, and projected these results out to 10 years. We parameterized a predictive model of WNS epidemiology and its effects on hibernatory bat populations with observed environmental data from bat hibernation sites in Texas. Our model suggests that bat populations in northern Texas will be more affected by WNS mortality than southern Texas. As such, we recommend prioritizing the preservation of large overwintering colonies of bats in north Texas through management actions. Our model further illustrates that infectious disease spread and infectious disease severity can become uncoupled over a gradient of environmental variation. Finally, our results highlight the importance of understanding host, pathogen and environmental conditions in various settings to elucidate what may happen across a breadth of environments.


Author(s):  
Karen J. Vanderwolf ◽  
Lewis J. Campbell ◽  
Daniel R. Taylor ◽  
Tony L. Goldberg ◽  
David S. Blehert ◽  
...  

White-nose syndrome is one of the most devastating wildlife diseases ever documented. Some bat species are resistant to or tolerant of the disease, and we previously reported that certain traits of the skin mycobiome of bat species in eastern North America are strongly associated with resistance to WNS.


2015 ◽  
pp. 1-17 ◽  
Author(s):  
Amber D. Tripodi ◽  
Allen L. Szalanski

Many species of bumble bees (Hymenoptera: Apidae: Bombus Latreille) are declining throughout their ranges in North America, yet detecting population trends can be difficult when historical survey data are lacking.  In the present study, contemporary data is compared to a 1965 survey to detect changes in bumble bee distributions throughout Arkansas.  Using county-level records as a point of comparison to look for changes in state-wide occurrence among species over time, we find that state-level changes reflect national trends.  Contemporary records of Bombus bimaculatus Cresson and B. impatiens Cresson have more than tripled, while records for B. pensylvanicus (De Geer) show a decline to 61% of historical levels.  Although B. fervidus (Fabricius) has been reported infrequently in the state, misidentifications may have led to an overestimation of the state’s species richness.  In addition to an updated assessment of the bumble bees of Arkansas, we also provide new, localized information on the seasonal phenology and plant preferences of each species that can be used to guide conservation efforts.


2019 ◽  
Vol 79 (1) ◽  
pp. 139-175 ◽  
Author(s):  
Dylan Shane Connor

With more than 30 million people moving to North America during the Age of Mass Migration (1850–1913), governments feared that Europe was losing its most talented workers. Using new data from Ireland in the early twentieth century, I provide evidence to the contrary, showing that the sons of farmers and illiterate men were more likely to emigrate than their literate and skilled counterparts. Emigration rates were highest in poorer farming communities with stronger migrant networks. I constructed these data using new name-based techniques to follow people over time and to measure chain migration from origin communities to the United States.


Sign in / Sign up

Export Citation Format

Share Document