scholarly journals Exploring Energy Landscapes of Intrinsically Disordered Proteins: Insights into Functional Mechanisms

2021 ◽  
Author(s):  
Antonio B. Oliveira ◽  
Xingcheng Lin ◽  
Prakash Kulkarni ◽  
José N. Onuchic ◽  
Susmita Roy ◽  
...  

AbstractIntrinsically disordered proteins (IDPs) lack a rigid 3D structure and populate a polymorphic ensemble of conformations. Because of the lack of a reference conformation, their energy landscape representation in terms of reaction coordinates presents a daunting challenge. Here, our newly developed Energy Landscape Visualization Method (ELViM), a reaction coordinate-free approach, shows its prime application to explore frustrated energy landscapes of an intrinsically disordered protein, Prostate-Associated Gene 4 (PAGE4). PAGE4 is a transcriptional coactivator that potentiates the oncogene c-Jun. Two kinases, namely HIPK1 and CLK2, phosphorylate PAGE4 generating variants phosphorylated at different serine/threonine residues (HIPK1-PAGE4 and CLK2-PAGE4, respectively) with opposing functions. While HIPK1-PAGE4 predominantly phosphorylates Thr51 and potentiates c-Jun, CLK2-PAGE4 hyper-phosphorylates PAGE4 and attenuates transactivation. To understand the underlying mechanisms of conformational diversity among different phosphoforms, we have analyzed their atomistic trajectories simulated using AWSEM forcefield and the energy landscapes were elucidated using ELViM. This method allows us to identify and compare the population distributions of different conformational ensembles of PAGE4 phosphoforms using the same effective phase space. The results reveal a predominant conformational ensemble with an extended C-terminal segment of WT PAGE4, which exposes a functional residue Thr51, implying its potential of undertaking a fly-casting mechanism while binding to its cognate partner. In contrast, for HIPK1-PAGE4, a compact conformational ensemble enhances its population sequestering phosphorylated-Thr51. This clearly explains the experimentally observed weaker affinity of HIPK1-PAGE4 for c-Jun. ELViM appears as a powerful tool especially to analyze the highly-frustrated energy landscape representation of IDPs where appropriate reaction coordinates are hard to apprehend.

2017 ◽  
Vol 114 (13) ◽  
pp. E2644-E2653 ◽  
Author(s):  
Prakash Kulkarni ◽  
Mohit Kumar Jolly ◽  
Dongya Jia ◽  
Steven M. Mooney ◽  
Ajay Bhargava ◽  
...  

Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.


2018 ◽  
Author(s):  
Sunita Patel ◽  
Bal Krishnan ◽  
Ramakrishna V. Hosur ◽  
Kandala V. R. Chary

AbstractIntrinsically disordered proteins (IDPs) form a special category because they lack a unique well-folded 3D structure under physiological conditions. They play crucial role in cell signaling, regulatory functions and responsible for several diseases. Although, they are abundant in nature, only a small fraction of it has been characterized till date. Such proteins adopt a range of conformations and can undergo transformation from disordered-to-ordered state or vice-versa upon binding to ligand. Insights of such conformational transition is perplexing in several cases. In the present study, we characterized disordered as well as ordered states and the factors contributing the transitions through a mutational study by employing replica exchange molecular dynamics simulation on a βγ-crystallin. Most of the proteins within this superfamily are inherently ordered. However, Hahellin, although a member of βγ-crystallin, it is intrinsically disordered in its apo-form which takes a well-ordered βγ-crystallin fold upon binding to Ca2+. It is intriguing that the mutation at the 5th position of the canonical motif to Arg increases the domain stability in several ordered microbial βγ-crystallins with concomitant loss in Ca2+ binding affinity. We carried out similar Ser to Arg mutations at 5th position of the canonical motif for the first time in an intrinsically disordered protein to understand the mechanistic insights of conformational transition. Our study revealed that newly formed ionic and hydrogen bonding interactions at the canonical Ca2+ binding sites play crucial role in transforming the disordered conformation into ordered βγ-crystallin.Author summaryIntrinsically disordered proteins lack a unique ordered 3D structure under physiological condition. Although, they are abundant in nature, only a small fraction of these proteins has been characterized till date due to adaptation of multiple conformations and methodological limitation. βγ-crystallins are inherently ordered, however recently a small number of proteins within this superfamily have been identified as intrinsically disordered protein. Hahellin is one such protein which is intrinsically disordered in its apo-form but takes a well-ordered βγ-crystallin fold upon binding to Ca2+. In the present study, we decipher the underlying mechanism of disordered-to-ordered transition in Hahellin by mutations, employing replica exchange molecular dynamics simulations. Earlier experimental studies reported an increase in stabilization of the ordered βγ-crystallion upon mutation to Arg at 5th position of the canonical Ca2+ binding motifs, N/D-N/D-X1-X2-S/T-S. We performed similar Ser to Arg mutation in an intrinsically disordered Hahellin to get the mechanistic insights of the conformational transition in the absence of Ca2+. Our study revealed that several newly formed ionic and hydrogen bonding interactions contributed by the mutant residues are responsible for both intra- and inter-motif rigidification, resulting in overall stability of βγ-crystallin domain.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 662 ◽  
Author(s):  
Iva Pritišanac ◽  
Robert Vernon ◽  
Alan Moses ◽  
Julie Forman Kay

Bioinformatics and biophysical studies of intrinsically disordered proteins and regions (IDRs) note the high entropy at individual sequence positions and in conformations sampled in solution. This prevents application of the canonical sequence-structure-function paradigm to IDRs and motivates the development of new methods to extract information from IDR sequences. We argue that the information in IDR sequences cannot be fully revealed through positional conservation, which largely measures stable structural contacts and interaction motifs. Instead, considerations of evolutionary conservation of molecular features can reveal the full extent of information in IDRs. Experimental quantification of the large conformational entropy of IDRs is challenging but can be approximated through the extent of conformational sampling measured by a combination of NMR spectroscopy and lower-resolution structural biology techniques, which can be further interpreted with simulations. Conformational entropy and other biophysical features can be modulated by post-translational modifications that provide functional advantages to IDRs by tuning their energy landscapes and enabling a variety of functional interactions and modes of regulation. The diverse mosaic of functional states of IDRs and their conformational features within complexes demands novel metrics of information, which will reflect the complicated sequence-conformational ensemble-function relationship of IDRs.


2019 ◽  
Author(s):  
Mustapha Carab Ahmed ◽  
Ramon Crehuet ◽  
Kresten Lindorff-Larsen

AbstractThe level of compaction of an intrinsically disordered protein may affect both its physical and biological properties, and can be probed via different types of biophysical experiments. Small-angle X-ray scattering (SAXS) probe the radius of gyration (Rg) whereas pulsed-field-gradient nuclear magnetic resonance (NMR) diffusion, fluorescence correlation spectroscopy and dynamic light scattering experiments can be used to determine the hydrodynamic radius (Rh). Here we show how to calculate Rg and Rh from a computationally-generated conformational ensemble of an intrinsically disordered protein. We further describe how to use a Bayesian/Maximum Entropy procedure to integrate data from SAXS and NMR diffusion experiments, so as to derive conformational ensembles in agreement with those experiments.


2019 ◽  
Vol 116 (41) ◽  
pp. 20446-20452 ◽  
Author(s):  
Utsab R. Shrestha ◽  
Puneet Juneja ◽  
Qiu Zhang ◽  
Viswanathan Gurumoorthy ◽  
Jose M. Borreguero ◽  
...  

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Author(s):  
Bin Chong ◽  
Yingguang Yang ◽  
Zi-Le Wang ◽  
Han Xing ◽  
Zhirong Liu

Intrinsically disordered proteins (IDPs) widely involve in human diseases and are thus attractive therapeutic targets. In practice, however, it is computationally prohibitive to dock large ligand libraries to thousands and...


2019 ◽  
Author(s):  
Valentin Bauer ◽  
Boris Schmidtgall ◽  
Gergő Gógl ◽  
Jozica Dolenc ◽  
Judit Osz ◽  
...  

Intrinsically disordered proteins (IDPs), which undergo folding upon binding to their targets, are critical players in protein interaction networks. Here we demonstrate that incorporation of non-canonical alpha-methylated amino acids into the unstructured activation domain of the transcriptional coactivator ACTR can stabilize helical conformations and strengthen binding interactions with the nuclear coactivator binding domain (NCBD) of CREB-binding protein (CBP). A combinatorial alpha-methylation scan of the ACTR sequence converged on two substitutions at positions 1055 and 1076 that increase affinity for both NCBD and the full length 270 kDa CBP by one order of magnitude. The first X-ray structure of the modified ACTR domain bound to NCBD revealed that the key alpha-methylated amino acids were localized within alpha-helices. Biophysical studies showed that the observed changes in binding energy are the result of long-range interactions and redistribution of enthalpy and entropy. This proof-of-concept study establishes a potential strategy for selective inhibition of protein-protein interactions involving IDPs in cells.<br>


2012 ◽  
Vol 40 (5) ◽  
pp. 995-999 ◽  
Author(s):  
Brigitte Gontero ◽  
Stephen C. Maberly

Many proteins contain disordered regions under physiological conditions and lack specific three-dimensional structure. These are referred to as IDPs (intrinsically disordered proteins). CP12 is a chloroplast protein of approximately 80 amino acids and has a molecular mass of approximately 8.2–8.5 kDa. It is enriched in charged amino acids and has a small number of hydrophobic residues. It has a high proportion of disorder-promoting residues, but has at least two (often four) cysteine residues forming one (or two) disulfide bridge(s) under oxidizing conditions that confers some order. However, CP12 behaves like an IDP. It appears to be universally distributed in oxygenic photosynthetic organisms and has recently been detected in a cyanophage. The best studied role of CP12 is its regulation of the Calvin cycle responsible for CO2 assimilation. Oxidized CP12 forms a supramolecular complex with two key Calvin cycle enzymes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and PRK (phosphoribulokinase), down-regulating their activity. Association–dissociation of this complex, induced by the redox state of CP12, allows the Calvin cycle to be inactive in the dark and active in the light. CP12 is promiscuous and interacts with other enzymes such as aldolase and malate dehydrogenase. It also plays other roles in plant metabolism such as protecting GAPDH from inactivation and scavenging metal ions such as copper and nickel, and it is also linked to stress responses. Thus CP12 seems to be involved in many functions in photosynthetic cells and behaves like a jack of all trades as well as being a master of the Calvin cycle.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3265 ◽  
Author(s):  
Vladimir N. Uversky

Cells are inhomogeneously crowded, possessing a wide range of intracellular liquid droplets abundantly present in the cytoplasm of eukaryotic and bacterial cells, in the mitochondrial matrix and nucleoplasm of eukaryotes, and in the chloroplast’s stroma of plant cells. These proteinaceous membrane-less organelles (PMLOs) not only represent a natural method of intracellular compartmentalization, which is crucial for successful execution of various biological functions, but also serve as important means for the processing of local information and rapid response to the fluctuations in environmental conditions. Since PMLOs, being complex macromolecular assemblages, possess many characteristic features of liquids, they represent highly dynamic (or fuzzy) protein–protein and/or protein–nucleic acid complexes. The biogenesis of PMLOs is controlled by specific intrinsically disordered proteins (IDPs) and hybrid proteins with ordered domains and intrinsically disordered protein regions (IDPRs), which, due to their highly dynamic structures and ability to facilitate multivalent interactions, serve as indispensable drivers of the biological liquid–liquid phase transitions (LLPTs) giving rise to PMLOs. In this article, the importance of the disorder-based supramolecular fuzziness for LLPTs and PMLO biogenesis is discussed.


Biomolecules ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 147 ◽  
Author(s):  
Prakash Kulkarni ◽  
Vladimir Uversky

It is now increasingly evident that a large fraction of the human proteome comprises proteins that, under physiological conditions, lack fixed, ordered 3D structures as a whole or have segments that are not likely to form a defined 3D structure [...]


Sign in / Sign up

Export Citation Format

Share Document