scholarly journals Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake

2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.

Author(s):  
Kasun M. Thambugala ◽  
Dinushani A. Daranagama ◽  
Alan J. L. Phillips ◽  
Sagarika D. Kannangara ◽  
Itthayakorn Promputtha

Plant pathogens cause severe losses or damage to crops worldwide and thereby significantly reduce the quality and quantity of agricultural commodities. World tendencies are shifting towards reducing the usage of chemically synthesized pesticides, while various biocontrol methods, strategies and approaches are being used in plant disease management. Fungal antagonists play a significant role in controlling plant pathogens and diseases and they are used as Biocontrol Agents (BCAs) throughout the world. This review provides a comprehensive list of fungal BCAs used against fungal plant pathogens according to modern taxonomic concepts, and clarifies their phylogenetic relationships because thewrong names are frequently used in the literature of biocontrol. Details of approximately 300 fungal antagonists belonging to 13 classes and 113 genera are listed together with the target pathogens and corresponding plant diseases. Trichoderma is identified as the genus with greatest potential comprising 25 biocontrol agents that have been used against a number of plant fungal diseases. In addition to Trichoderma, nine genera are recognized as significant comprising five or more known antagonistic species, namely, Alternaria, Aspergillus, Candida, Fusarium, Penicillium, Pichia, Pythium, Talaromyces, and Verticillium. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of fungal antagonists was performed to establish their phylogenetic relationships.


2021 ◽  
Vol 12 ◽  
Author(s):  
Narayan Chandra Paul ◽  
Sung-Won Park ◽  
Haifeng Liu ◽  
Sungyu Choi ◽  
Jihyeon Ma ◽  
...  

Crop production has been substantially reduced by devastating fungal and oomycete pathogens, and these pathogens continue to threaten global food security. Although chemical and cultural controls have been used for crop protection, these involve continuous costs and time and fungicide resistance among plant pathogens has been increasingly reported. The most efficient way to protect crops from plant pathogens is cultivation of disease-resistant cultivars. However, traditional breeding approaches are laborious and time intensive. Recently, the CRISPR/Cas9 system has been utilized to enhance disease resistance among different crops such as rice, cacao, wheat, tomato, and grape. This system allows for precise genome editing of various organisms via RNA-guided DNA endonuclease activity. Beyond genome editing in crops, editing the genomes of fungal and oomycete pathogens can also provide new strategies for plant disease management. This review focuses on the recent studies of plant disease resistance against fungal and oomycete pathogens using the CRISPR/Cas9 system. For long-term plant disease management, the targeting of multiple plant disease resistance mechanisms with CRISPR/Cas9 and insights gained by probing fungal and oomycete genomes with this system will be powerful approaches.


2016 ◽  
Vol 17 (4) ◽  
pp. 250-253 ◽  
Author(s):  
Frank M. Dugan ◽  
Sydney Everhart

Multiple traditional species names for plant pathogenic fungi have been supplemented with new names that delimit formerly cryptic species. In separate instances, isolates within a species are clearly differentiated by both phylogeny and distinctive pathogenic traits and are assigned sub-specific designations. These new species names and the sub-specific designations are both cases of cryptic species that are, in some instances, relevant and/or critical for plant disease management. Here we provide examples of such instances in which newly described taxa differ from the original (“parent”) in phenotypic traits of importance to plant disease management: host range, fungicide sensitivity, environmental niche, metabolite production, regulatory status, or other attributes. Accepted for publication 16 November 2016.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


2021 ◽  
Vol 23 (6) ◽  
pp. 2531-2540
Author(s):  
Gang Tang ◽  
Yuyang Tian ◽  
Junfan Niu ◽  
Jingyue Tang ◽  
Jiale Yang ◽  
...  

The utilization of nanotechnology for the design of pesticide formulations has enormous potential to enhance the efficiency of pesticides and reduce their adverse impacts on the environment


2013 ◽  
Vol 46 (12) ◽  
pp. 1430-1441 ◽  
Author(s):  
A. Karthikeyan ◽  
M. Deivamani ◽  
V.G. Shobhana ◽  
M. Sudha ◽  
T. Anandhan

2021 ◽  
pp. 129461
Author(s):  
Zeinab Qazanfarzadeh ◽  
Seyedeh Fatemeh Mirpoor ◽  
Mahdi Kadivar ◽  
Hajar Shekarchizadeh ◽  
Rocco Di Girolamo ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1364-1370 ◽  
Author(s):  
Feng Zhou ◽  
Hong-Jie Liang ◽  
Ya-Li Di ◽  
Hong You ◽  
Fu-Xing Zhu

Growth and virulence stimulations of sublethal doses of fungicides on plant-pathogenic fungi and oomycetes have been reported and the stimulatory effects are potentially relevant to plant disease management. Sclerotinia sclerotiorum is one of the most devastating and economically important necrotrophic fungal phytopathogens, capable of infecting more than 400 species of plants worldwide. In order to study stimulatory effects of sublethal doses of fungicides on S. sclerotiorum, 55 dimethachlon-sensitive isolates and 3 dimethachlon-resistant isolates of S. sclerotiorum were assayed to determine effects of sublethal doses of dimethachlon on mycelial growth rate on potato dextrose agar (PDA) media and virulence on oilseed rape plants. Results showed that all 3 dimethachlon-resistant isolates and 13 of the 55 sensitive isolates exhibited stimulatory responses to sublethal doses of dimethachlon. Dimethachlon-resistant isolates grew significantly (P < 0.05) faster on PDA media amended with dimethachlon at 0.5 to 4 μg/ml than on fungicide-free PDA media. As for virulence on detached leaves of oilseed rape plants, lesion diameters of dimethachlon-resistant isolates after growth on PDA media amended with dimethachlon at 0.5 to 2 μg/ml were significantly larger (P < 0.05) than the control. The maximum stimulatory effects were 42.40 to 59.80%. In pot experiments, for both dimethachlon-sensitive and -resistant isolates, significant (P < 0.05) virulence stimulations were observed after spraying with dimethachlon at a concentration of 2 μg/ml. After growing on dimethachlon-amended PDA media, H2O2 sensitivity of S. sclerotiorum decreased significantly (P < 0.05) compared with the nonamended PDA control.


Sign in / Sign up

Export Citation Format

Share Document