scholarly journals Prevalence, complete genome and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coral-killing sponge, Terpios hoshinota

2021 ◽  
Author(s):  
Yu-Hsiang Chen ◽  
Hsing-Ju Chen ◽  
Cheng-Yu Yang ◽  
Jia-Ho Shiu ◽  
Daphne Z. Hoh ◽  
...  

AbstractTerpios hoshinota is a ferocious, space-competing sponge that kills a variety of stony corals by overgrowth. Outbreaks of this species have led to intense coral reef damage and declines in living corals on the square kilometer scale in many geographical locations. Our large-scale 16S rRNA gene survey across three oceans revealed that the core microbiome of T. hoshinota included operational taxonomic units (OTUs) related to Prochloron, Endozoicomonas, Pseudospirillum, SAR116, Magnetospira, and Ruegeria. A Prochloron- related OTU was the most dominant cyanobacterium in T. hoshinota in the western Pacific Ocean, South China Sea, and Indian Ocean. The complete metagenome-assembled genome of the Prochloron-related cyanobacterium and our pigment analysis revealed that this bacterium had phycobiliproteins and phycobilins and lacked chlorophyll b, inconsistent with the iconic definition of Prochloron. Furthermore, the phylogenetic analyses based on 16S rRNA genes and 120 single-copy genes demonstrated that the bacterium was phylogenetically distinct to Prochloron, strongly suggesting that it should be a sister taxon to Prochloron; we therefore proposed this symbiotic cyanobacterium as a novel species under a new genus: Candidatus Paraprochloron terpiosii. With the recovery of the complete genome, we characterized the metabolic potentials of the novel cyanobacterium in carbon and nitrogen cycling and proposed a model for the interaction between Ca. Pp. terpiosi LD05 and T. hoshinota. In addition, comparative genomics analysis revealed that Ca. Paraprochloron and Prochloron showed distinct features in transporter systems and DNA replication.ImportanceThe finding that one species predominates cyanobacteria in T. hoshinota from different geographic locations indicates that this sponge and Ca. Pp. terpiosi LD05 share a tight relationship. This study builds the foundation for T. hoshinota’s microbiome and paves a way for understanding the ecosystem, invasion mechanism, and causes of outbreak of this coral-killing sponge. Also, the first Prochloron-related complete genome enables us to study this bacterium with molecular approaches in the future and broadens our knowledge of the evolution of symbiotic cyanobacteria.

2021 ◽  
Vol 12 ◽  
Author(s):  
Suhyun Kim ◽  
Md. Rashedul Islam ◽  
Ilnam Kang ◽  
Jang-Cheon Cho

Although many culture-independent molecular analyses have elucidated a great diversity of freshwater bacterioplankton, the ecophysiological characteristics of several abundant freshwater bacterial groups are largely unknown due to the scarcity of cultured representatives. Therefore, a high-throughput dilution-to-extinction culturing (HTC) approach was implemented herein to enable the culture of these bacterioplankton lineages using water samples collected at various seasons and depths from Lake Soyang, an oligotrophic reservoir located in South Korea. Some predominant freshwater bacteria have been isolated from Lake Soyang via HTC (e.g., the acI lineage); however, large-scale HTC studies encompassing different seasons and water depths have not been documented yet. In this HTC approach, bacterial growth was detected in 14% of 5,376 inoculated wells. Further, phylogenetic analyses of 16S rRNA genes from a total of 605 putatively axenic bacterial cultures indicated that the HTC isolates were largely composed of Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. Importantly, the isolates were distributed across diverse taxa including phylogenetic lineages that are widely known cosmopolitan and representative freshwater bacterial groups such as the acI, acIV, LD28, FukuN57, MNG9, and TRA3–20 lineages. However, some abundant bacterial groups including the LD12 lineage, Chloroflexi, and Acidobacteria could not be domesticated. Among the 71 taxonomic groups in the HTC isolates, representative strains of 47 groups could either form colonies on agar plates or be revived from frozen glycerol stocks. Additionally, season and water depth significantly affected bacterial community structure, as demonstrated by 16S rRNA gene amplicon sequencing analyses. Therefore, our study successfully implemented a dilution-to-extinction cultivation strategy to cultivate previously uncultured or underrepresented freshwater bacterial groups, thus expanding the basis for future multi-omic studies.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2320-2325 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
Cheng-Zhe Wen ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped, yellow-pigment-producing bacterium (designated strain CC-CZW007T) was isolated from seafood samples (sea urchins) at Penghu Island in Taiwan. Strain CC-CZW007T grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity to Vitellibacter vladivostokensis JCM 11732T (96.8 %), Vitellibacter soesokkakensis KCTC 32536T (96.4 %), Vitellibacter nionensis KCTC 32420T (95.8 %) and Vitellibacter aestuarii JCM 15496T (95.6 %) and lower sequence similarity to members of other genera. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CZW007T with respect to other species of the genus Vitellibacter. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipid profile was composed of major amounts of phosphatidylethanolamine, unidentified lipids and aminolipids; a moderate amount of aminophospholipid was also detected. The DNA G+C content was 34.7 mol%. The predominant quinone system was menaquinone (MK-6). On the basis of polyphasic taxonomic evidence presented here, strain CC-CZW007T is proposed to represent a novel species within the genus Vitellibacter, for which the name Vitellibacter echinoideorum sp. nov. is proposed. The type strain is CC-CZW007T ( = BCRC 80886T = JCM 30378T).


2006 ◽  
Vol 72 (7) ◽  
pp. 5077-5082 ◽  
Author(s):  
Thomas A. Auchtung ◽  
Cristina D. Takacs-Vesbach ◽  
Colleen M. Cavanaugh

ABSTRACT The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.


2017 ◽  
Vol 66 (1) ◽  
pp. 39-56
Author(s):  
Nilgun Tekin ◽  
Arzu Coleri Cihan ◽  
Basar Karaca ◽  
Cumhur Cokmus

Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.


Author(s):  
Mohamad Syazwan Ngalimat ◽  
Suriana Sabri

Many of the publically available Bacillus 16S rRNA genes and genomes in the NCBI database are inconsistently assigned as B. amyloliquefaciens. The highly conserved nature of the 16S rRNA gene makes it fail to differentiate species within the operational group B. amyloliquefaciens. Here, comparative phylogenies of the complete 16S rRNA, gyrB, rpoB, trpB, recA, and cheA nucleotide sequences of bacterial strains within the operational group were analyzed. As the result, the gyrB, rpoB, and trpB phylogenetic analyses showed stable topology that comprised three monophyletic clades: (i) B. amyloliquefaciens; (ii) B. siamensis; and (iii) B. velezensis. Phylogenies derived by comparison of the gyrB, rpoB, trpB, recA, and cheA with the 16S rRNA gene-derived phylogeny was significant as evaluated by the likelihood ratio test. The trpB, rpoB, and trpB gene-derived phylogenies provide a tool for speciation within the operational group B. amyloliquefaciens.


Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT486T, isolated from soil sampled in a maize field in Taiwan. Cells of strain CC-CFT486T were short rods, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT486T associated with Aeromicrobium panacisoli (97.0 % sequence identity), Aeromicrobium lacus (97.0 %), Aeromicrobium erythreum (96.8 %) and Aeromicrobium alkaliterrae (96.8 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) values were 70.6–77.8 % (n=11) compared within the type strains of the genus Aeromicrobium . Strain CC-CFT486T contained C16 : 0, C17 : 0, C17 : 1  ω8c and C18 : 1  ω9c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified aminophospholipids and three unknown phospholipids. The cell wall peptidoglycan of strains CC-CFT486T contained ll-diaminopimelic acid (ll-DAP) and the major polyamine was spermidine. The DNA G+C content was 70.6 mol% and the predominant quinone was menaquinone 9 (MK-9). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence and ANI analyses, strain CC-CFT486T is proposed to represent a novel Aeromicrobium species, for which the name Aeromicrobium terrae sp. nov. (type strain CC-CFT486T=BCRC 81217T=JCM 33499T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5725-5733 ◽  
Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT480T, isolated from soil sampled in a maize field in Taiwan, ROC. Cells of strain CC-CFT480T were rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 3 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT480T associated with Cerasibacillus quisquiliarum (97.2 % sequence identity), Virgibacillus soli (95.7 %), Virgibacillus carmonensis (95.4 %) and Virgibacillus byunsanensis (95.2 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain CC-CFT480T and C. quisquiliarum were 74.2 and 20.1 %, respectively. Strain CC-CFT480T contained iso-C15:0, C16:1 ω7c alcohol and iso-C17:1 ω10c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown aminophospholipids, one uncharacterized aminophospholipid and two unknown phospholipids. The major polyamine was spermidine. The DNA G+C content was 34.8 mol% and the predominant quinone was menaquinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT480T is proposed to represent a novel Cerasibacillus species, for which the name Cerasibacillus terrae sp. nov. (type strain CC-CFT480T=BCRC 81216T=JCM 33498T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6257-6265 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim

A marine alphaproteobacterium, designated as strain GH3-10T, was isolated from the rhizosphere mud of a halophyte (Suaeda japonica) collected at the seashore of Gangwha Island, Republic of Korea. The isolate was found to be Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short rods and produced orange-coloured colonies. The 16S rRNA gene- and whole genome-based phylogenetic analyses exhibited that strain GH3-10T belonged to the genus Aurantiacibacter and was most closely related to Aurantiacibacter atlanticus s21-N3T (98.7 % 16S rRNA gene sequence similarity) and Aurantiacibacter marinus KCTC 23554T (98.4 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unidentified lipid. The major fatty acids were C18 : 1  ω7c, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C18 : 1  ω7c 10-methyl. The DNA G+C content was 61.3 mol% (by genome). Average nucleotide identity and DNA–DNA relatedness values between the isolate and its phylogenetically closest relatives, together with phenotypic distinctness warranted the taxonomic description of a new species. On the basis of data obtained by a polyphasic approach, strain GH3-10T (=KCTC 62379T=JCM 32444T) represents a novel species of the genus Aurantiacibacter , for which the name Aurantiacibacter rhizosphaerae sp. nov. is proposed. According to phylogenetic coherence based on 16S rRNA genes and core genomes, it is also proposed that Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 be transferred to Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively.


2020 ◽  
Vol 70 (12) ◽  
pp. 6373-6380 ◽  
Author(s):  
Galina Dubinina ◽  
Natalia Leshcheva ◽  
Natalia Mikheeva ◽  
Stefan Spring ◽  
Meina Neumann-Schaal ◽  
...  

A novel obligately anaerobic spirochete strain K2T was isolated from bottom marine sediments at Crater Bay of Yankicha Island (Kuril Islands, Russia). Strain K2T had helical shape and Gram-negatively stained. The optimal growth conditions were as follows: the optimum temperature was 28–30 °C with range 5–34 °C; optimal pH at 7.0–7.5 with range of 6.8–8.5; NaCl optimum at 3–3.5 % (w/v) and range of 1–7 % (w/v). Strain K2T was catalase- and oxidase-negative. Glucose fermentation products were acetate, lactate, ethanol, CO2, H2. The major fatty acids were C14 : 0, iso-C13 : 0, iso-C15:0, C14 : 0 DMA, iso-C15 : 0 DMA. The G+C content of genomic DNA was 43.2 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain K2T belonged to the genus Oceanispirochaeta of the family Spirochaetaceae . The 16S rRNA gene sequence similarity of strain K2T and O. litoralis DSM 2029T and O. sediminicola DSM 104770T was 96 and 94 %, respectively. Based on the results of our study, we propose the name Oceanispirochaeta crateris sp. nov.; type strain K2T (=DSM 16308T=VKM B-3266T). Also, the taxonomic status of Spirochaeta perfilevii was revised: 16S rRNA genes sequence showed less than 89 % similarity to nearest phylogenetic neighbours. Therefore, we proposed to separate this species into a novel genus Thiospirochaeta - T. perfilievii gen. nov., comb. nov.


2011 ◽  
Vol 77 (6) ◽  
pp. 2071-2080 ◽  
Author(s):  
Bartholomeus van den Bogert ◽  
Willem M. de Vos ◽  
Erwin G. Zoetendal ◽  
Michiel Kleerebezem

ABSTRACTLarge-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection ofActinobacteriastrongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to theVeillonellagroup, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.


Sign in / Sign up

Export Citation Format

Share Document