scholarly journals A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli

2017 ◽  
Vol 66 (1) ◽  
pp. 39-56
Author(s):  
Nilgun Tekin ◽  
Arzu Coleri Cihan ◽  
Basar Karaca ◽  
Cumhur Cokmus

Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2320-2325 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
Cheng-Zhe Wen ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped, yellow-pigment-producing bacterium (designated strain CC-CZW007T) was isolated from seafood samples (sea urchins) at Penghu Island in Taiwan. Strain CC-CZW007T grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity to Vitellibacter vladivostokensis JCM 11732T (96.8 %), Vitellibacter soesokkakensis KCTC 32536T (96.4 %), Vitellibacter nionensis KCTC 32420T (95.8 %) and Vitellibacter aestuarii JCM 15496T (95.6 %) and lower sequence similarity to members of other genera. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CZW007T with respect to other species of the genus Vitellibacter. The major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipid profile was composed of major amounts of phosphatidylethanolamine, unidentified lipids and aminolipids; a moderate amount of aminophospholipid was also detected. The DNA G+C content was 34.7 mol%. The predominant quinone system was menaquinone (MK-6). On the basis of polyphasic taxonomic evidence presented here, strain CC-CZW007T is proposed to represent a novel species within the genus Vitellibacter, for which the name Vitellibacter echinoideorum sp. nov. is proposed. The type strain is CC-CZW007T ( = BCRC 80886T = JCM 30378T).


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S492-S492
Author(s):  
David C Nguyen ◽  
Michelle Lisgaris ◽  
Sruthi Vasireddy ◽  
Richard J Wallace ◽  
Federico Perez ◽  
...  

Abstract Background The widespread use of molecular techniques has resulted in increasing numbers of newly characterized rapidly growing mycobacteria (RGM). Many RGM cause soft tissue and orthopedic hardware infection, particularly after trauma. RGM species identification remains challenging with few genetic differences between species. Methods We describe a case involving RGM. We report results of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (Bruker Biotyper), sequencing of rpoB, erm(39), and 16S rRNA genes, and antibiotic susceptibility testing (AST). We review previous reports describing similar RGM infections. Results A 58-year-old male sustained multiple fractures and right thigh compartment syndrome after a motorcycle accident. He underwent fasciotomy and multi-stage surgical fixations. 3 months later, he had wound dehiscence, purulence and multiple fluid collections of his right leg and knee requiring surgical drainage and removal of orthopedic hardware. After 4 days, acid-fast bacilli grew on routine bacterial culture media. MALDI-TOF identified the isolate as Mycobacterium mageritense. In contrast, sequencing of 16S rRNA (100% identity) and erm(39) (> 99% identity) identified the isolate as Mycobacterium houstonense; erm(39) only had 80% similarity with Mycobacterium fortuitum. Sequencing of rpoB showed a 19 bp difference with the M. houstonense type strain, and showed similarity to M. fortuitum (97.64%) than M. houstonense (97.45%). AST demonstrated resistance to clarithromycin only. After initial treatment with imipenem, ciprofloxacin, and doxycycline, definite therapy with ciprofloxacin and doxycycline was successful. In the literature, we found one case each of M. mageritense and M. houstonense infection after trauma. Conclusion This case highlights the importance of RGM other than M. fortuitum as a cause of soft tissue and orthopedic hardware infections, and illustrates the difficulty of identifying them to the species level. Sequencing of erm(39) and 16S rRNA gene identified the isolate as M. houstonense, but the larger difference (>2.5%) in rpoB sequence suggests a novel species. Further characterization is underway. Efforts to determine RGM species and antibiotic susceptibility give important insight into diagnosis and management. Disclosures All authors: No reported disclosures.


2006 ◽  
Vol 72 (7) ◽  
pp. 5077-5082 ◽  
Author(s):  
Thomas A. Auchtung ◽  
Cristina D. Takacs-Vesbach ◽  
Colleen M. Cavanaugh

ABSTRACT The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.


2007 ◽  
Vol 57 (8) ◽  
pp. 1855-1867 ◽  
Author(s):  
Wei Wei ◽  
Robert E. Davis ◽  
Ing-Ming Lee ◽  
Yan Zhao

Phytoplasmas are cell wall-less bacteria that cause numerous plant diseases. As no phytoplasma has been cultured in cell-free medium, phytoplasmas cannot be differentiated and classified by the traditional methods which are applied to culturable prokaryotes. Over the past decade, the establishment of a phytoplasma classification scheme based on 16S rRNA restriction fragment length polymorphism (RFLP) patterns has enabled the accurate and reliable identification and classification of a wide range of phytoplasmas. In the present study, we expanded this classification scheme through the use of computer-simulated RFLP analysis, achieving rapid differentiation and classification of phytoplasmas. Over 800 publicly available phytoplasma 16S rRNA gene sequences were aligned using the clustal_x program and the aligned 1.25 kb fragments were exported to pDRAW32 software for in silico restriction digestion and virtual gel plotting. Based on distinctive virtual RFLP patterns and calculated similarity coefficients, phytoplasma strains were classified into 28 groups. The results included the classification of hundreds of previously unclassified phytoplasmas and the delineation of 10 new phytoplasma groups representing three recently described and seven novel putative ‘Candidatus Phytoplasma’ taxa.


2003 ◽  
Vol 69 (11) ◽  
pp. 6610-6619 ◽  
Author(s):  
Robin Brinkmeyer ◽  
Katrin Knittel ◽  
Jutta Jürgens ◽  
Horst Weyland ◽  
Rudolf Amann ◽  
...  

ABSTRACT A comprehensive assessment of bacterial diversity and community composition in arctic and antarctic pack ice was conducted through cultivation and cultivation-independent molecular techniques. We sequenced 16S rRNA genes from 115 and 87 pure cultures of bacteria isolated from arctic and antarctic pack ice, respectively. Most of the 33 arctic phylotypes were >97% identical to previously described antarctic species or to our own antarctic isolates. At both poles, the α- and γ-proteobacteria and the Cytophaga-Flavobacterium group were the dominant taxonomic bacterial groups identified by cultivation as well as by molecular methods. The analysis of 16S rRNA gene clone libraries from multiple arctic and antarctic pack ice samples revealed a high incidence of closely overlapping 16S rRNA gene clone and isolate sequences. Simultaneous analysis of environmental samples with fluorescence in situ hybridization (FISH) showed that∼ 95% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells hybridized with the general bacterial probe EUB338. More than 90% of those were further assignable. Approximately 50 and 36% were identified asγ -proteobacteria in arctic and antarctic samples,respectively. Approximately 25% were identified asα -proteobacteria, and 25% were identified as belonging to the Cytophaga-Flavobacterium group. For the quantification of specific members of the sea ice community, new oligonucleotide probes were developed which target the genera Octadecabacter, Glaciecola, Psychrobacter, Marinobacter, Shewanella, and Polaribacter. High FISH detection rates of these groups as well as high viable counts corroborated the overlap of clone and isolate sequences. A terrestrial influence on the arctic pack ice community was suggested by the presence of limnic phylotypes.


Author(s):  
Mohamad Syazwan Ngalimat ◽  
Suriana Sabri

Many of the publically available Bacillus 16S rRNA genes and genomes in the NCBI database are inconsistently assigned as B. amyloliquefaciens. The highly conserved nature of the 16S rRNA gene makes it fail to differentiate species within the operational group B. amyloliquefaciens. Here, comparative phylogenies of the complete 16S rRNA, gyrB, rpoB, trpB, recA, and cheA nucleotide sequences of bacterial strains within the operational group were analyzed. As the result, the gyrB, rpoB, and trpB phylogenetic analyses showed stable topology that comprised three monophyletic clades: (i) B. amyloliquefaciens; (ii) B. siamensis; and (iii) B. velezensis. Phylogenies derived by comparison of the gyrB, rpoB, trpB, recA, and cheA with the 16S rRNA gene-derived phylogeny was significant as evaluated by the likelihood ratio test. The trpB, rpoB, and trpB gene-derived phylogenies provide a tool for speciation within the operational group B. amyloliquefaciens.


Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT486T, isolated from soil sampled in a maize field in Taiwan. Cells of strain CC-CFT486T were short rods, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT486T associated with Aeromicrobium panacisoli (97.0 % sequence identity), Aeromicrobium lacus (97.0 %), Aeromicrobium erythreum (96.8 %) and Aeromicrobium alkaliterrae (96.8 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) values were 70.6–77.8 % (n=11) compared within the type strains of the genus Aeromicrobium . Strain CC-CFT486T contained C16 : 0, C17 : 0, C17 : 1  ω8c and C18 : 1  ω9c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, two unidentified aminophospholipids and three unknown phospholipids. The cell wall peptidoglycan of strains CC-CFT486T contained ll-diaminopimelic acid (ll-DAP) and the major polyamine was spermidine. The DNA G+C content was 70.6 mol% and the predominant quinone was menaquinone 9 (MK-9). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence and ANI analyses, strain CC-CFT486T is proposed to represent a novel Aeromicrobium species, for which the name Aeromicrobium terrae sp. nov. (type strain CC-CFT486T=BCRC 81217T=JCM 33499T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5725-5733 ◽  
Author(s):  
Shih-Yao Lin ◽  
Chia-Fang Tsai ◽  
Asif Hameed ◽  
Chiu-Chung Young

A polyphasic taxonomic approach was used to characterize a Gram-stain-positive bacterium, designated strain CC-CFT480T, isolated from soil sampled in a maize field in Taiwan, ROC. Cells of strain CC-CFT480T were rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °С, pH 8 and 3 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-CFT480T associated with Cerasibacillus quisquiliarum (97.2 % sequence identity), Virgibacillus soli (95.7 %), Virgibacillus carmonensis (95.4 %) and Virgibacillus byunsanensis (95.2 %), and lower sequence similarity values to other species. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain CC-CFT480T and C. quisquiliarum were 74.2 and 20.1 %, respectively. Strain CC-CFT480T contained iso-C15:0, C16:1 ω7c alcohol and iso-C17:1 ω10c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unknown aminophospholipids, one uncharacterized aminophospholipid and two unknown phospholipids. The major polyamine was spermidine. The DNA G+C content was 34.8 mol% and the predominant quinone was menaquinone 7 (MK-7). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT480T is proposed to represent a novel Cerasibacillus species, for which the name Cerasibacillus terrae sp. nov. (type strain CC-CFT480T=BCRC 81216T=JCM 33498T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6257-6265 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim

A marine alphaproteobacterium, designated as strain GH3-10T, was isolated from the rhizosphere mud of a halophyte (Suaeda japonica) collected at the seashore of Gangwha Island, Republic of Korea. The isolate was found to be Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short rods and produced orange-coloured colonies. The 16S rRNA gene- and whole genome-based phylogenetic analyses exhibited that strain GH3-10T belonged to the genus Aurantiacibacter and was most closely related to Aurantiacibacter atlanticus s21-N3T (98.7 % 16S rRNA gene sequence similarity) and Aurantiacibacter marinus KCTC 23554T (98.4 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid and an unidentified lipid. The major fatty acids were C18 : 1  ω7c, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C18 : 1  ω7c 10-methyl. The DNA G+C content was 61.3 mol% (by genome). Average nucleotide identity and DNA–DNA relatedness values between the isolate and its phylogenetically closest relatives, together with phenotypic distinctness warranted the taxonomic description of a new species. On the basis of data obtained by a polyphasic approach, strain GH3-10T (=KCTC 62379T=JCM 32444T) represents a novel species of the genus Aurantiacibacter , for which the name Aurantiacibacter rhizosphaerae sp. nov. is proposed. According to phylogenetic coherence based on 16S rRNA genes and core genomes, it is also proposed that Erythrobacter suaedae Lee et al. 2019. and Erythrobacter flavus Yoon et al. 2003 be transferred to Aurantiacibacter suaedae comb. nov. and Qipengyuania flava comb. nov., respectively.


2020 ◽  
Vol 70 (12) ◽  
pp. 6373-6380 ◽  
Author(s):  
Galina Dubinina ◽  
Natalia Leshcheva ◽  
Natalia Mikheeva ◽  
Stefan Spring ◽  
Meina Neumann-Schaal ◽  
...  

A novel obligately anaerobic spirochete strain K2T was isolated from bottom marine sediments at Crater Bay of Yankicha Island (Kuril Islands, Russia). Strain K2T had helical shape and Gram-negatively stained. The optimal growth conditions were as follows: the optimum temperature was 28–30 °C with range 5–34 °C; optimal pH at 7.0–7.5 with range of 6.8–8.5; NaCl optimum at 3–3.5 % (w/v) and range of 1–7 % (w/v). Strain K2T was catalase- and oxidase-negative. Glucose fermentation products were acetate, lactate, ethanol, CO2, H2. The major fatty acids were C14 : 0, iso-C13 : 0, iso-C15:0, C14 : 0 DMA, iso-C15 : 0 DMA. The G+C content of genomic DNA was 43.2 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain K2T belonged to the genus Oceanispirochaeta of the family Spirochaetaceae . The 16S rRNA gene sequence similarity of strain K2T and O. litoralis DSM 2029T and O. sediminicola DSM 104770T was 96 and 94 %, respectively. Based on the results of our study, we propose the name Oceanispirochaeta crateris sp. nov.; type strain K2T (=DSM 16308T=VKM B-3266T). Also, the taxonomic status of Spirochaeta perfilevii was revised: 16S rRNA genes sequence showed less than 89 % similarity to nearest phylogenetic neighbours. Therefore, we proposed to separate this species into a novel genus Thiospirochaeta - T. perfilievii gen. nov., comb. nov.


Sign in / Sign up

Export Citation Format

Share Document