scholarly journals Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells

2021 ◽  
Author(s):  
Xi Chen ◽  
Elisa Saccon ◽  
K. Sofia Appelberg ◽  
Flora Mikaeloff ◽  
Jimmy Esneider Rodriguez ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has caused a global health emergency. A key feature of COVID-19 is dysregulated interferon-response. Type-I interferon (IFN-I) is one of the earliest antiviral innate immune responses following viral infection and plays a significant role in the pathogenesis of SARS-CoV-2. In this study, using a proteomics-based approach, we identified that SARS-CoV-2 infection induces delayed and dysregulated IFN-I signaling in Huh7 cells. We demonstrate that SARS-CoV-2 is able to inhibit RIG-I mediated IFN-β production. Our results also confirm the recent findings that IFN-I pretreatment is able to reduce susceptibility of Huh7 cells to SARS-CoV-2, but not post-treatment. Moreover, senescent Huh7 cells, in spite of showing accentuated IFN-I response were more susceptible to SARS-CoV-2 infection, and the virus effectively inhibited IFIT1 in these cells. Finally, proteomic comparison between SARS-CoV-2, SARS-CoV and MERS-CoV revealed a distinct differential regulatory signature of interferon-related proteins emphasizing that therapeutic strategies based on observations in SARS-CoV and MERS-CoV should be used with caution. Our findings provide a better understanding of SARS-CoV-2 regulation of cellular interferon response and a perspective on its use as a treatment. Investigation of different interferon stimulated genes and their role in inhibition of SARS-CoV-2 pathogenesis may direct novel antiviral strategies.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xi Chen ◽  
Elisa Saccon ◽  
K. Sofia Appelberg ◽  
Flora Mikaeloff ◽  
Jimmy Esneider Rodriguez ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has caused a global health emergency. A key feature of COVID-19 is dysregulated interferon-response. Type-I interferon (IFN-I) is one of the earliest antiviral innate immune responses following viral infection and plays a significant role in the pathogenesis of SARS-CoV-2. In this study, using a proteomics-based approach, we identified that SARS-CoV-2 infection induces delayed and dysregulated IFN-I signaling in Huh7 cells. We demonstrate that SARS-CoV-2 is able to inhibit RIG-I mediated IFN-β production. Our results also confirm the recent findings that IFN-I pretreatment is able to reduce the susceptibility of Huh7 cells to SARS-CoV-2, but not post-treatment. Moreover, senescent Huh7 cells, in spite of showing accentuated IFN-I response were more susceptible to SARS-CoV-2 infection, and the virus effectively inhibited IFIT1 in these cells. Finally, proteomic comparison between SARS-CoV-2, SARS-CoV, and MERS-CoV revealed a distinct differential regulatory signature of interferon-related proteins emphasizing that therapeutic strategies based on observations in SARS-CoV and MERS-CoV should be used with caution. Our findings provide a better understanding of SARS-CoV-2 regulation of cellular interferon response and a perspective on its use as a treatment. Investigation of different interferon-stimulated genes and their role in the inhibition of SARS-CoV-2 pathogenesis may direct novel antiviral strategies.


2021 ◽  
Author(s):  
Wangsheng Ji ◽  
Lianfei Zhang ◽  
Xiaoyu Xu ◽  
Xinqi Liu

Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.


2020 ◽  
Author(s):  
Nigeer Te ◽  
Jordi Rodon ◽  
Maria Ballester ◽  
Mónica Pérez ◽  
Lola Pailler-García ◽  
...  

ABSTRACTWhile MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.IMPORTANCEMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


2020 ◽  
Author(s):  
Ziwei Yang ◽  
Xiaolin Zhang ◽  
Fan Wang ◽  
Peihui Wang ◽  
Ersheng Kuang ◽  
...  

AbstractMelanoma differentiation-associated gene-5 (MDA5) acts as a cytoplasmic RNA sensor to detect viral dsRNA and mediates type I interferon (IFN) signaling and antiviral innate immune responses to infection by RNA viruses. Upon recognition of viral dsRNA, MDA5 is activated with K63-linked polyubiquitination and then triggers the recruitment of MAVS and activation of TBK1 and IKK, subsequently leading to IRF3 and NF-κB phosphorylation. Great numbers of symptomatic and severe infections of SARS-CoV-2 are spreading worldwide, and the poor efficacy of treatment with type I interferon and antiviral agents indicates that SARS-CoV-2 escapes from antiviral immune responses via an unknown mechanism. Here, we report that SARS-CoV-2 nonstructural protein 8 (NSP8) acts as an innate immune suppressor and inhibits type I IFN signaling to promote infection of RNA viruses. It downregulates the expression of type I IFNs, IFN-stimulated genes and proinflammatory cytokines by binding to MDA5 and impairing its K63-linked polyubiquitination. Our findings reveal that NSP8 mediates innate immune evasion during SARS-CoV-2 infection and may serve as a potential target for future therapeutics for SARS-CoV-2 infectious diseases.ImportanceThe large-scale spread of COVID-19 is causing mass casualties worldwide, and the failure of antiviral immune treatment suggests immune evasion. It has been reported that several nonstructural proteins of severe coronaviruses suppress antiviral immune responses; however, the immune suppression mechanism of SARS-CoV-2 remains unknown. Here, we revealed that NSP8 protein of SARS-CoV-2 directly blocks the activation of the cytosolic viral dsRNA sensor MDA5 and significantly downregulates antiviral immune responses. Our study contributes to our understanding of the direct immune evasion mechanism of SARS-CoV-2 by showing that NSP8 suppresses the most upstream sensor of innate immune responses involved in the recognition of viral dsRNA.


2020 ◽  
Author(s):  
Nigeer Te ◽  
Jordi Rodon ◽  
Maria Ballester ◽  
Mónica Pérez ◽  
Lola Pailler-García ◽  
...  

AbstractWhile MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, provoking the induction of interferon stimulated genes (ISGs) along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, is central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.Author summaryMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a respiratory disease causing high mortality in humans. In camelids, the main MERS-CoV reservoir host, viral infection leads to subclinical disease. Our study describes transcriptional regulations of innate immunological pathways underlying asymptomatic clinical manifestations of alpacas in response to MERS-CoV. Concomitant to the peak of infection, these animals elicited a strong transient interferon response and induction of the anti-inflammatory cytokine IL10 in the nasal mucosa. This was associated to a dimmed regulation of pro-inflammatory cytokines and induction of interferon stimulated genes along the whole respiratory mucosa, leading to the rapid clearance of the virus. Thus, innate immune responses occurring in the nasal mucosa appear to be the key in controlling MERS-CoV disease by avoiding a cytokine storm. Understanding on how asymptomatic host reservoirs counteract MERS-CoV infection will aid in the development of antiviral drugs and vaccines.


2018 ◽  
Vol 123 (Suppl_1) ◽  
Author(s):  
Richard P Ng ◽  
Kevin R King ◽  
Aaron D Aguirre ◽  
Sean P Arlauckas ◽  
Ralph Weissleder

2020 ◽  
Author(s):  
Shuliang Chen ◽  
Sameer Kumar ◽  
Nagaraja Tirumuru ◽  
Jennifer L. Welch ◽  
Lulu Hu ◽  
...  

AbstractN6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in cells or HIV-1-infected individuals. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in human monocytic cells. Transfection of differentiated monocytic cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered RNA m6A levels by manipulating the expression of the m6A erasers or pharmacological inhibition of m6A addition in virus-producing cells. RNA transfection and viral infection of differentiated monocytic cells demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies revealed that m6A of HIV-1 RNA escaped the RIG-I-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Moreover, RNA of peripheral blood mononuclear cells from HIV-1 viremic patients showed increased m6A levels that correlated with increased IFN-I mRNA expression compared to levels from HIV-1-suppressed patients on antiretroviral therapy. Together, our results suggest that RNA m6A modifications regulate viral replication and antiviral innate immune responses in HIV-1-infected individuals.Author SummaryHIV-1 is known as a weak inducer of antiviral cytokines including IFN-I, but it is unclear how HIV-1 evades innate immunity. Different types of RNA modifications including m6A within the HIV-1 genome modulate viral replication; however, the role of m6A modifications of HIV-1 RNA in regulating innate immune responses remains elusive. In this study, we found that HIV-1 RNA modified with m6A suppresses the expression of IFN-I in differentiated monocytic cells by avoiding innate immune detection of viral RNA mediated by RIG-I, an RNA sensor in host cells. We also observed significantly increased RNA m6A modifications of peripheral blood mononuclear cells from HIV-1 viremic patients compared to virally suppressed patients on combined antiretroviral therapy, suggesting a functional link between m6A modifications and antiretroviral treatment. Investigating the functions of m6A modifications of HIV-1 RNA in regulating innate immune sensing and IFN-I induction in monocytic cells can help understand the mechanisms of HIV-1 persistence.


2020 ◽  
Author(s):  
Jun Kang ◽  
Zheng Pang ◽  
Zhenwei Zhou ◽  
Xianhuang Li ◽  
Sihua Liu ◽  
...  

Human enterovirus 68 (EV-D68) has received considerable attention recently as a global re-emergent pathogen because it causes severe respiratory tract infections and acute flaccid myelitis (AFM). The nonstructural protein 2A protease (2Apro) of EVs that function in the cleavage of host proteins comprises a pivotal part of the viral immune evasion process. However, the pathogenic mechanism of EV-D68 is not fully understood. In this study, we found EV-D68 inhibited anti-viral type I interferon responses by cleaving tumor necrosis factor receptor associated factor 3 (TRAF3), which is the key factor for type I interferon production. EV-D68 inhibited Sendai virus (SEV)-induced interferon regulatory factor 3 (IRF3) activation and beta interferon (IFN-β) expression in HeLa and HEK293T cells. Furthermore, we demonstrated that EV-D68 and 2Apro was able to cleave the C-terminal region of TRAF3 in HeLa and HEK293T cells, respectively. A cysteine to alanine substitution at amino acid 107 (C107A) in the 2Apro protease resulted in the loss of cleavage activity to TRAF3, and mutation of glycine at amino acid 462 to alanine (G462A) in TRAF3 conferred resistance to 2Apro. These results suggest that control of TRAF3 by 2Apro may be a mechanism EV-D68 utilizes to subvert host innate immune responses. IMPORTANCE Human enterovirus 68 (EV-D68) has received considerable attention recently as a global re-emergent pathogen because it causes severe respiratory tract infections and acute flaccid myelitis. The nonstructural protein 2A protease (2Apro) of EV, which functions in cleavage of host proteins, comprises an essential part of the viral immune evasion process. However, the pathogenic mechanism of EV-D68 is not fully understood. Here, we show for the first time that EV-D68 inhibited anti-viral type I interferon responses by cleaving tumor necrosis factor receptor-associated factor 3 (TRAF3). Furthermore, we identified the key cleavage site in TRAF3. Our study may suggest a new mechanism by which the 2Apro of EV facilitates subversion of host innate immune responses. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets against EV-D68.


Sign in / Sign up

Export Citation Format

Share Document