scholarly journals Does the ratio of β-1,4-glucosidase (BG) to β-1,4-N-acetylglucosaminidase (NAG) indicate the relative resource allocation of soil microbes to C and N acquisition?

2021 ◽  
Author(s):  
Taiki Mori ◽  
Ryota Aoyagi ◽  
Kanehiro Kitayama ◽  
Jiangming Mo

AbstractThe ratio of β-1,4-glucosidase (BG) to β-1,4-N-acetylglucosaminidase (NAG) activity (BG:NAG ratio) is often used as an indicator of the relative resource allocation of soil microbes to C acquisition compared with N. An increasing number of recent studies have used this index to assess the nutrient status of microbes. However, the validity of this index for assessing the nutrient status of microbes is not well tested. In this study, we collected published data and tested that validity by investigating whether N fertilization elevated the BG:NAG ratio, assuming that microbes reduce their allocation to the N-acquiring enzyme (NAG) under N-enriched conditions. Of the data points, 54% (82/151) did not support the hypothesis because those studies showed lower BG:NAG ratios in N-enriched soils than under ambient conditions, especially when the ambient BG:NAG ratio was higher than 2.0 (77%, 59/77). This suggests that the BG:NAG ratio does not always indicate the microbial status for C or N limitation. Rather, we hypothesized that the decomposition stage explained the variation in BG:NAG because N addition accelerates decomposition, and the BG:NAG ratio is lower at later stages of decomposition due to the dominance of NAG-targeting C (chitin or peptidoglycan). A negative correlation of BG:NAG ratio with polyphenol oxidase activity, which increases with decomposition, supported our hypothesis.

2021 ◽  
Author(s):  
Philipp Gündler ◽  
Alberto Canarini ◽  
Sara Marañón Jiménez ◽  
Gunnhildur Gunnarsdóttir ◽  
Páll Sigurðsson ◽  
...  

<p>Seasonality of soil microorganisms plays a critical role in terrestrial carbon (C) and nitrogen (N) cycling. The asynchrony of immobilization by microbes and uptake by plants may be important for N retention during winter, when plants are inactive. Meanwhile, the known warming effects on soil microbes (decreasing biomass and increasing growth rates) may affect microbial seasonal dynamics and nutrient retention during winter.</p><p>We sampled soils from a geothermal warming site in Iceland (www.forhot.is) which includes three in situ warming levels (ambient, +3 °C, +6 °C). We harvested soil samples at 9 time points over one year and measured the seasonal variation in microbial biomass carbon (Cmic) and nitrogen (Nmic) and microbial physiology (growth and carbon use efficiency) by an <sup>18</sup>O-labelling technique.</p><p>We observed that Cmic and Nmic peaked in winter, followed by a decline in spring and summer. In contrast growth and respiration rates were higher in summer than winter. The observed biomass peak at lower growth rates, suggests that microbial death rates must have declined even more than growth rates. Soil warming increased biomass-specific microbial activity (i.e., growth, respiration, and turnover rates per unit of microbial biomass), prolonging the period of higher microbial activity found in summer into autumn and winter. Microbial carbon use efficiency was unaltered by soil warming. Throughout the seasons, warming reduced Cmic and Nmic, albeit with a stronger effect in winter than summer and restrained winter biomass accumulation by up to 78% compared to ambient conditions. We estimated a reduced microbial winter N storage capacity by 45.5 and 94.6 kg ha<sup>-1</sup> at +3 °C and +6 °C warming respectively compared to ambient conditions. This reduction represents 1.57% and 3.26% of total soil N stocks, that could potentially be lost per year from these soils.</p><p>Our results clearly demonstrate that soil warming strongly decreases microbial C and N immobilization when plants are inactive, potentially leading to higher losses of C and N from warmed soils over winter. These results have important implications as increased N losses may restrict increased plant growth in a future climate.</p>


2019 ◽  
Vol 691 ◽  
pp. 562-571 ◽  
Author(s):  
L. Huang ◽  
C.W. Riggins ◽  
S. Rodríguez-Zas ◽  
M.C. Zabaloy ◽  
M.B. Villamil

2021 ◽  
Vol 770 ◽  
pp. 144730
Author(s):  
Lili Rong ◽  
Xiaohu Wu ◽  
Jun Xu ◽  
Fengshou Dong ◽  
Xingang Liu ◽  
...  

2019 ◽  
Vol 10 (12) ◽  
pp. 3543-3555 ◽  
Author(s):  
Luciano Barluzzi ◽  
Lucile Chatelain ◽  
Farzaneh Fadaei-Tirani ◽  
Ivica Zivkovic ◽  
Marinella Mazzanti

A diuranium(v) bis-nitride complex supported by siloxide ligands displays remarkable reactivity in ambient conditions with small molecules such as CS2, CO2, CO and H2 resulting in N–C and N–H bond formation. The nitride linker also leads to an unusually strong antiferromagnetic coupling between uranium(v) ions.


2016 ◽  
Vol 114 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Shuhui Cai ◽  
Guiyun Jin ◽  
Lisa Tauxe ◽  
Chenglong Deng ◽  
Huafeng Qin ◽  
...  

Variations of the Earth’s geomagnetic field during the Holocene are important for understanding centennial to millennial-scale processes of the Earth’s deep interior and have enormous potential implications for chronological correlations (e.g., comparisons between different sedimentary recording sequences, archaeomagnetic dating). Here, we present 21 robust archaeointensity data points from eastern China spanning the past ∼6 kyr. These results add significantly to the published data both regionally and globally. Taking together, we establish an archaeointensity reference curve for Eastern Asia, which can be used for archaeomagnetic dating in this region. Virtual axial dipole moments (VADMs) of the data range from a Holocene-wide low of ∼27 to “spike” values of ∼166 ZAm2(Z: 1021). The results, in conjunction with our recently published data, confirm the existence of a decrease in paleointensity (DIP) in China around ∼2200 BCE. These low intensities are the lowest ever found for the Holocene and have not been reported outside of China. We also report a spike intensity of 165.8 ± 6.0 ZAm2at ∼1300 BCE (±300 y), which is either a prelude to or the same event (within age uncertainties) as spikes first reported in the Levant.


Soil Research ◽  
2002 ◽  
Vol 40 (5) ◽  
pp. 761 ◽  
Author(s):  
R. A. Sarooshi ◽  
G. C. Cresswell ◽  
L. Tesoriero ◽  
P. J. Milham ◽  
I. Barchia ◽  
...  

The study compares the effects of biosolids compost (BC) and inorganic fertiliser (IF) on the nutrient status of a clay loam at Rydalmere in Western Sydney, and an earthy sand at Somersby, 85 km north of Sydney. The soils represent the textural range used for vegetable production in the Sydney Basin of New South Wales. The soils had been under permanent sod (Rydalmere) or native vegetation (Somersby) for at 40 years prior to the experiment. There were 3 treatments during February 1994: IF, fallow (F), and BC. The same plots were treated again during September 1994 to give the combinations: IF followed by IF (IF + IF); F by BC (F + BC); BC by BC (BC + BC). The 4 replicates of each treatment were randomised in blocks. Treatments were incorporated into raised beds to a depth of 15 cm and vegetables were planted in March and again in October 1994. The total amounts of C and N initially present in the soil in the beds (0-15 cm) at Rydalmere were at least 3 times greater than at Somersby and the ratio was greater for S, P, Ca, Mg, K, and Na. By April 1995, the quantities of the 8 monitored nutrients had decreased at both sites for the IF + IF treatment; increased at Somersby, but not at Rydalmere for F + BC; and increased at both sites for the BC + BC treatment. The changes caused by the BC + BC treatment were greater in relative terms at Somersby, because of the initial difference in fertility between the 2 soils. For example, the C and N content increased by an approximate factor of 2 at Somersby, and by greater factors for the other elements. BC + BC was also the only treatment to increase other indices of fertility, such as effective cation exchange capacity (ECEC) and Bray-P, in the surface 15 cm. The treatments did not affect pH in the soil profile (0-50 cm) and increases in EC were ephemeral. The nutrient composition of the 20-30 cm zone was affected at both sites. By the end of the experiment the concentration of C, N, P, Ca, and Bray-P increased and Mg decreased. For C and N between-treatment differences were small, indicating that the observed effects were mostly caused by leaching of the products of mineralisation of soil organic matter. Treatment effects were larger for P, Ca, Mg, and Bray-P, and the final concentrations for the F + BC and BC + BC treatments exceeded those for the IF + IF treatment. At Somersby, both BC treatments increased ECEC, consistent with the importance of leaching as a process of nutrient loss at this site. Consequently, intensive vegetable cropping may pose serious environmental risks particularly on sandy sites.


2002 ◽  
Vol 82 (2) ◽  
pp. 211-217 ◽  
Author(s):  
S S Malhi ◽  
J T Harapiak ◽  
M. Nyborg ◽  
K S Gill ◽  
N A Flore

An adequate level of organic matter is needed to sustain the productivity, improve the quality of soils and increase soil C. Grassland improvement is considered to be one of the best ways to achieve these goals. A field experiment, in which bromegrass (Bromus inermis Leyss) was grown for hay, was conducted from 1974 to 1996 on a thin Black Chernozemic soil near Crossfield, Alberta. Total organic C (TOC) and total N (TN), and light fraction organic C (LFOC) and light fraction N (LFN) of soil for the treatments receiving 23 annual applications of 112 kg N ha-1 as ammonium nitrate (AN) or urea in early autumn, late autumn, early spring or late spring were compared to zero-N check. Soil samples from 0- to 5- cm (layer 1), 5- to 10- cm (layer 2), 10- to 15- cm (layer 3) and 15- to 30-cm depths were taken in October 1996. Mass of TOC, TN, LFOC and LFN was calculated using equivalent mass technique. The concentration and mass of TOC and LFOC, TN and LFN in the soil were increased by N fertilization compared to the zero-N check. The majority of this increase in C and N occurred in the surface 5-cm depth and predominantly occurred in the light fraction material. In layer 1, the average increase from N fertilization was 3.1 Mg C ha-1 for TOC, 1.82 Mg C ha-1 for LFOC, 0.20 Mg N ha-1 for TN and 0.12 Mg N ha-1 for LFN. The LFOC and LFN were more responsive to N fertilization compared to the TOC and TN. Averaged across application times, more TOC, LFOC, TN and LFN were stored under AN than under urea in layer 1, by 1.50, 1.21, 0.06 and 0.08 Mg ha-1, respectively. Lower volatilization loss and higher plant uptake of surfaced-broadcast N were probable reasons from more soil C and N storage under AN source. Time of N application had no effect on the soil characteristics studied. In conclusion, most of the N-induced increase in soil C and N occurred in the 0- to 5-cm depth (layer 1) and in the light fraction material, with the increases being greater under AN than urea. Key words: Bromegrass, light fraction C and N, N source, soil, total organic C and N


Author(s):  
L. Angiolini ◽  
D. P. F. Darbyshire ◽  
M. H. Stephenson ◽  
M. J. Leng ◽  
T. S. Brewer ◽  
...  

ABSTRACTThe Lower Permian of the Haushi basin, Interior Oman (Al Khlata Formation to Saiwan Formation/lower Gharif member) records climate change from glaciation, through marine sedimentation in the Haushi sea, to subtropical desert. To investigate the palaeoclimatic evolution of the Haushi Sea we used O, C, and Sr isotopes from 31 brachiopod shells of eight species collected bed by bed within the type-section of the Saiwan Formation. We assessed diagenesis by scanning electron microscopy of ultrastructure, cathodoluminescence, and geochemistry, and rejected fifteen shells not meeting specific preservation criteria. Spiriferids and spiriferinids show better preservation of the fibrous secondary layer than do orthotetids and productids and are therefore more suitable for isotopic analysis. δ18O of −3·7 to −3·1℅ from brachiopods at the base of the Saiwan Formation are probably related to glacial meltwater. Above this, an increase in δ18O may indicate ice accumulation elsewhere in Gondwana or more probably that the Haushi sea was an evaporating embayment of the Neotethys Ocean. δ13C varies little and is within the range of published data: its trend towards heavier values is consistent with increasing aridity and oligotrophy. Saiwan Sr isotope signatures are less radiogenic than those of the Sakmarian LOWESS seawater curve, which is based on extrapolation between few data points. In the scenario of evaporation in a restricted Haushi basin, the variation in Sr isotope composition may reflect a fluvial component.


2020 ◽  
Author(s):  
Carolina Urbina Malo ◽  
Ye Tian ◽  
Chupei Shi ◽  
Shasha Zhang ◽  
Marilena Heitger ◽  
...  

<p>Despite the intensified efforts to understand the impacts of climate change on forest soil C dynamics, few studies have addressed the long term effects of warming on microbially mediated soil C and nutrient processes. In the few long-term soil warming experiments the initial stimulation of soil C cycling diminished with time, due to thermal acclimation of the microbial community or due to depletion of labile soil C as the major substrate for heterotrophic soil microbes. Thermal acclimation can arise as a consequence of prolonged warming and is defined as the direct organism response to elevated temperature across annual to decadal time-scales which manifest as a physiological change of the soil microbial community. This mechanism is clearly different from apparent thermal acclimation, where the attenuated response of soil microbial processes to warming is due to the exhaustion of the labile soil C pool.</p><p>The Achenkirch experiment, situated in the Northern Limestone Alps, Austria (47°34’ 50’’ N; 11°38’ 21’’ E; 910 m a.s.l.) is a long term (>15 yrs) soil warming experiment that has provided key insights into the effects of global warming on the forest soil C cycle. At the Achenkirch site, we have observed a sustained positive response of heterotrophic soil respiration and of soil CO<sub>2</sub> efflux to warming after nine years (2013), making it an appropriate setting for testing hypotheses about continued or decreasing warming effects at decadal scales. We collected soil from six warmed and six control plots in October 2019, from 0-10 cm and 10-20 cm depth, and incubated them at three different temperatures: ambient, +4, and +10 °C. We measured potential soil enzyme activities with fluorimetric assays, gross rates of protein depolymerization, N mineralization, and nitrification with <sup>15</sup>N isotope pool dilution approaches, and microbial growth, respiration, and C use efficiency (CUE) based on the <sup>18</sup>O incorporation in DNA and gas analysis.  Our preliminary results show that potential enzyme activities of aminopeptidase, N-acetylglucosaminidase, b-glucosidase, and acid phosphatase were stimulated by decadal soil warming by 1.7- to 3.5-fold, measured at the same i.e. ambient temperature. In contrast, the temperature sensitivity (Q10) remained unaltered between warmed and control soils for all enzyme activities (Q10=1.63-2.28), except for aminopeptidase where we observed a decrease in Q10 by 25% in warmed topsoils (0-10 cm). Aminopeptidase also had the highest temperature-sensitivity (Q10=2.39), causing a decrease of the enzymatic C: N acquisition ratio with warming. These results indicate an increasing investment in microbial N acquisition with warming. We will follow these trends based on results on gross rates of soil C and N processes, allowing to delineate decadal soil warming effects on soil microbial biogeochemistry and to understand their effect on the cross-talk between organic C and N cycling in calcareous forest soils.</p>


Sign in / Sign up

Export Citation Format

Share Document