scholarly journals Archaeointensity results spanning the past 6 kiloyears from eastern China and implications for extreme behaviors of the geomagnetic field

2016 ◽  
Vol 114 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Shuhui Cai ◽  
Guiyun Jin ◽  
Lisa Tauxe ◽  
Chenglong Deng ◽  
Huafeng Qin ◽  
...  

Variations of the Earth’s geomagnetic field during the Holocene are important for understanding centennial to millennial-scale processes of the Earth’s deep interior and have enormous potential implications for chronological correlations (e.g., comparisons between different sedimentary recording sequences, archaeomagnetic dating). Here, we present 21 robust archaeointensity data points from eastern China spanning the past ∼6 kyr. These results add significantly to the published data both regionally and globally. Taking together, we establish an archaeointensity reference curve for Eastern Asia, which can be used for archaeomagnetic dating in this region. Virtual axial dipole moments (VADMs) of the data range from a Holocene-wide low of ∼27 to “spike” values of ∼166 ZAm2(Z: 1021). The results, in conjunction with our recently published data, confirm the existence of a decrease in paleointensity (DIP) in China around ∼2200 BCE. These low intensities are the lowest ever found for the Holocene and have not been reported outside of China. We also report a spike intensity of 165.8 ± 6.0 ZAm2at ∼1300 BCE (±300 y), which is either a prelude to or the same event (within age uncertainties) as spikes first reported in the Levant.

2015 ◽  
Vol 112 (36) ◽  
pp. 11187-11192 ◽  
Author(s):  
Ron Shaar ◽  
Lisa Tauxe

Data on the past intensity of Earth’s magnetic field (paleointensity) are essential for understanding Earth’s deep interior, climatic modeling, and geochronology applications, among other items. Here we demonstrate the possibility that much of available paleointensity data could be biased by instability of thermoremanent magnetization (TRM) associated with non-single-domain (SD) particles. Paleointensity data are derived from experiments in which an ancient TRM, acquired in an unknown field, is replaced by a laboratory-controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the laboratory. Here we show experimental results violating this assumption in a manner not expected from standard theory. We show that the demagnetization−remagnetization relationship of non-SD specimens that were kept in a controlled field for only 2 y show a small but systematic bias relative to sister specimens that were given a fresh TRM. This effect, likely caused by irreversible changes in micromagnetic structures, leads to a bias in paleointensity estimates.


2021 ◽  
Vol 118 (34) ◽  
pp. e2100995118
Author(s):  
Anita Di Chiara ◽  
Lisa Tauxe ◽  
Thomas E. Levy ◽  
Mohammad Najjar ◽  
Fabio Florindo ◽  
...  

Constraining secular variation of the Earth’s magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth’s magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.


2021 ◽  
Vol 13 (13) ◽  
pp. 2570
Author(s):  
Teng Li ◽  
Bozhong Zhu ◽  
Fei Cao ◽  
Hao Sun ◽  
Xianqiang He ◽  
...  

Based on characteristics analysis about remote sensing reflectance, the Secchi Disk Depth (SDD) in the Qiandao Lake was predicted from the Landsat8/OLI data, and its changing rates on a pixel-by-pixel scale were obtained from satellite remote sensing for the first time. Using 114 matchups data pairs during 2013–2019, the SDD satellite algorithms suitable for the Qiandao Lake were obtained through both the linear regression and machine learning (Support Vector Machine) methods, with remote sensing reflectance (Rrs) at different OLI bands and the ratio of Rrs (Band3) to Rrs (Band2) as model input parameters. Compared with field observations, the mean absolute relative difference and root mean squared error of satellite-derived SDD were within 20% and 1.3 m, respectively. Satellite-derived results revealed that SDD in the Qiandao Lake was high in boreal spring and winter, and reached the lowest in boreal summer, with the annual mean value of about 5 m. Spatially, high SDD was mainly concentrated in the southeast lake area (up to 13 m) close to the dam. The edge and runoff area of the lake were less transparent, with an SDD of less than 4 m. In the past decade (2013–2020), 5.32% of Qiandao Lake witnessed significant (p < 0.05) transparency change: 4.42% raised with a rate of about 0.11 m/year and 0.9% varied with a rate of about −0.09 m/year. Besides, the findings presented here suggested that heavy rainfall would have a continuous impact on the Qiandao Lake SDD. Our research could promote the applications of land observation satellites (such as the Landsat series) in water environment monitoring in inland reservoirs.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 626
Author(s):  
Ramya Gupta ◽  
Abhishek Prasad ◽  
Suresh Babu ◽  
Gitanjali Yadav

A global event such as the COVID-19 crisis presents new, often unexpected responses that are fascinating to investigate from both scientific and social standpoints. Despite several documented similarities, the coronavirus pandemic is clearly distinct from the 1918 flu pandemic in terms of our exponentially increased, almost instantaneous ability to access/share information, offering an unprecedented opportunity to visualise rippling effects of global events across space and time. Personal devices provide “big data” on people’s movement, the environment and economic trends, while access to the unprecedented flurry in scientific publications and media posts provides a measure of the response of the educated world to the crisis. Most bibliometric (co-authorship, co-citation, or bibliographic coupling) analyses ignore the time dimension, but COVID-19 has made it possible to perform a detailed temporal investigation into the pandemic. Here, we report a comprehensive network analysis based on more than 20,000 published documents on viral epidemics, authored by over 75,000 individuals from 140 nations in the past one year of the crisis. Unlike the 1918 flu pandemic, access to published data over the past two decades enabled a comparison of publishing trends between the ongoing COVID-19 pandemic and those of the 2003 SARS epidemic to study changes in thematic foci and societal pressures dictating research over the course of a crisis.


2019 ◽  
Author(s):  
Xuexi Tie ◽  
Xin Long ◽  
Guohui Li ◽  
Shuyu Zhao ◽  
Jianming Xu

Abstract. PM2.5, a particulate matter with a diameter of 2.5 micrometers or less, is one of the major components of the air pollution in eastern China. In the past few years, China's government made strong efforts to reduce the PM2.5 pollutions. However, another important pollutant (ozone) becomes an important problem in eastern China. Ozone (O3) is produced by photochemistry, which requires solar radiation for the formation of O3. Under heavy PM2.5 pollution, the solar radiation is often depressed, and the photochemical production of O3 is prohibited. This study shows that during fall in eastern China, under heavy PM2.5 pollutions, there were often strong O3 photochemical productions, causing a co-occurrence of high PM2.5 and O3 concentrations. This co-occurrence of high PM2.5 and O3 is un-usual and is the main focus of this study. Recent measurements show that there were often high HONO surface concentrations in major Chinese mega cities, especially during daytime, with maximum concentrations ranging from 0.5 to 2 ppbv. It is also interesting to note that the high HONO concentrations were occurred during high aerosol concentration periods, suggesting that there were additional HONO surface sources in eastern China. Under the high daytime HONO concentrations, HONO can be photo-dissociated to be OH radicals, which enhance the photochemical production of O3. In order to study the above scientific issues, a radiative transfer model (TUV; Tropospheric Ultraviolet-Visible) is used in this study, and a chemical steady state model is established to calculate OH radical concentrations. The calculations show that by including the OH production of the photo-dissociated of HONO, the calculated OH concentrations are significantly higher than the values without including this production. For example, by including HONO production, the maximum of OH concentration under the high aerosol condition (AOD = 2.5) is similar to the value under low aerosol condition (AOD = 0.25) in the no-HONO case. This result suggests that even under the high aerosol condition, the chemical oxidizing process for O3 production can occurred, which explain the co-occurrence of high PM2.5 and high O3 in fall season in eastern China. However, the O3 concentrations were not significantly affected by the appearance of HONO in winter. This study shows that the seasonal variation of solar radiation plays important roles for controlling the OH production in winter. When the solar radiation is in a very low level in winter, it reaches the threshold level to prevent the OH chemical production, even by including the HONO production of OH. This study provides some important scientific highlights to better understand the O3 pollutions in eastern China.


Author(s):  
Tehreem Naveed ◽  
Rehan Zahid ◽  
Riaz Ahmad Mufti ◽  
Muhammad Waqas ◽  
Muhammad Talha Hanif

All the moving components in an internal combustion engine require a lubricant that allows smooth sliding and/or rolling of interacting surfaces. Lubricant not only minimizes the friction and wear but also dissipates the heat generated due to friction and removes debris from the area of contact. Environmental concerns, decreasing mineral oil reserves and difficult disposal of nonbiodegradable conventional lubricants have urged the researchers to shift towards environmental-friendly lubricants. Number of tribological studies carried out in the past have proved that ionic liquid-based bio-lubricants are sustainable and biodegradable alternative to mineral oils. This paper presents a brief review of properties of ionic liquids and their ability to reduce friction and wear between the interacting surfaces. Tribological performance and compatibility of ionic liquids with various base-oils have been compared under boundary lubrication. The results reveal that phosphonium-based ionic liquids namely tetra-decyl tri-hexyl phosphonium bis(2,4,4-trimethylpentyl) phosphinate (P66614)i(C8)2PO2 and tri-hexyl tetra-decyl phosphonium bis(2-ethylhexyl) phosphate (P-DEHP) are more suitable for tribological applications. Since, ionic liquids can be tailored according to the application and millions of combinations are possible therefore, there is a need to summarize the published data in a more systematic and logical way.


CFD letters ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 13-27
Author(s):  
Mohamad Lutfi Samsudin ◽  
Hasril Hasini

Meshing of domain in CFD is an important step to ensure accuracy of the solution. In the past, hexahedral or tetrahedral mesh systems were commonly used, and both have their merits and demerits. For large and complex geometry, polyhedral is another option but its accuracy is claimed to be lacking. In this paper, the use of polyhedral mesh system by past researchers are reviewed. Evaluation on the application of polyhedral mesh system for the study of the vortex formation with a simple single pump sump model is made. Validation was made through the comparison of the results from hexahedral, tetrahedral and polyhedral mesh sizes and the experimental data from published data. The polyhedral mesh system was found to perform satisfactorily and was able to match the results from the hexahedral mesh system as well as the experimental data.


Author(s):  
Scott D. Ironside ◽  
L. Blair Carroll

Enbridge Pipelines Inc. operates the world’s longest and most complex liquids pipeline network. As part of Enbridge’s Integrity Management Program In-Line Inspections have been and will continue to be conducted on more than 15,000 km of pipeline. The Inspection Programs have included using the most technologically advanced geometry tools in the world to detect geometrical discontinuities such as ovality, dents, and buckles. During the past number of years, Enbridge Pipelines Inc. has been involved in developing a method of evaluating the suitability of dents in pipelines for continued service. The majority of the work involved the development of a method of modeling the stresses within a dent using Finite Element Analysis (FEA). The development and validation of this model was completed by Fleet Technology Limited (FTL) through several projects sponsored by Enbridge, which included field trials and comparisons to previously published data. This model combined with proven fracture mechanics theory provides a method of determining a predicted life of a dent based on either the past or future operating conditions of the pipeline. CSA Standard Z662 – Oil and Gas Pipeline Systems provides criteria for the acceptability of dents for continued service. There have been occurrences, however, where dents that meet the CSA acceptability criteria have experienced failure. The dent model is being used to help define shape characteristics in addition to dent depth, the only shape factor considered by CSA, which contribute to dent failure. The dent model has also been utilized to validate the accuracy of current In-Line Inspection techniques. Typically a dent will lose some of its shape as the overburden is lifted from the pipeline and after the indentor is removed. Often there can be a dramatic “re-rounding” that will occur. The work included comparing the re-rounded dent shapes from a Finite Element model simulating the removal of the constraint on the pipe to the measured dent profile from a mold of the dent taken in the field after it has been excavated. This provided a measure of the accuracy of the tool. This paper will provide an overview of Enbridge’s dent management program, a description of the dent selection process for the excavation program, and a detailed review of the ILI validation work.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Giacomo Marocco ◽  
Subir Sarkar

We derive limits on millicharged dark states, as well as particles with electric or magnetic dipole moments, from the number of observed forward electron scattering events at the Big European Bubble Chamber in the 1982 CERN-WA-066 beam dump experiment. The dark states are produced by the 400~GeV proton beam primarily through the decays of mesons produced in the beam dump, and the lack of excess events places bounds extending up to GeV masses. These improve on bounds from all other experiments, in particular CHARM~II.


2021 ◽  
Vol 11 (2) ◽  
pp. 279-283
Author(s):  
Daryoush Babazadeh ◽  
Reza Ranjbar

The present review aimed to reveal the role of (GTG)5-PCR microbial typing in indicating the routes and source of infections, investigate the outbreaks and genotypes of clinical strains, as well as finding virulent strains and epidemiology of bacterial isolates. All available and published data in Google scholar, PubMed, ResearchGate, and Science Direct during the past two decades that used the (GTG)5-PCR method for genotyping the bacterial isolates were included in the current study. The findings have indicated that (GTG)5-PCR can be recommended as a possible, cost-effective, fast, and easy tool for molecular typing of bacterial isolates.


Sign in / Sign up

Export Citation Format

Share Document