scholarly journals Epidemic transmission with quarantine measures: application to COVID-19

Author(s):  
S.A. Trigger ◽  
E.B. Czerniawski ◽  
A.M. Ignatov

Equations for infection spread in a closed population are found in discrete approximation, corresponding to the published statistical data, and in continuous time in the form of delay differential equations. We consider the epidemic as dependent upon four key parameters: the size of population involved, the mean number of dangerous contacts of one infected person per day, the probability to transmit infection due to such contact and the mean duration of disease. In the simplest case of free-running epidemic in an infinite population, the number of infected rises exponentially day by day. Here we show the model for epidemic process in a closed population, constrained by isolation, treatment and so on. The four parameters introduced here have the clear sense and are in association with the well-known concept of reproduction number in the continuous susceptible– infectious–removed, susceptible–exposed–infectious–removed (SIR, SEIR) models. We derive the initial rate of infection spread from the published statistical data for the initial stage of epidemic, when the quarantine measures were absent. On this basis, we can found the corresponding basic reproduction number mentioned above. Our approach allows evaluating the influence of quarantine measures on free pandemic process that leads to the time-dependent rate of infection and suppression of infection. We found a good correspondence of the theory and reliable statistical data. The initially formulated discrete model, describing epidemic course day by day is transferred to differential form. The conditions for saturation of epidemic are found by solving the delay differential equations. They differ essentially from ones in SIR model due to finite delay, typical for COVID-19 The proposed model opens up the possibility to predict the optimal level of social quarantine measures. The model is quite flexible and it can be extended to more complex cases.

2020 ◽  
Author(s):  
Sergey Trigger ◽  
Eugeny Czerniawski

Abstract New discrete approximation for the infection spread is constructed based on COVID-19 epidemic data. We consider the epidemic as dependent upon four key parameters: the size of population involved, the mean number of dangerous contacts of one infected person per day, the probability to transmit infection due to such contact and the mean duration of disease. In the simplest case of free epidemic in an infinite population, the number of infected rises exponentially day by day. Here we show the model for epidemic process in a closed population, constrained by isolation, treatment and so on. The four parameters introduced here have the clear sense and are in association with the well-known concept of reproduction number in the continuous susceptible-infected-susceptible model. We derive these parameters from the adequate statistical data. On this basis, we also found the corresponding basic reproduction number mentioned above. Our approach allows evaluating the influence of quarantine measures on free pandemic process. We found a good correspondence of the theory and reliable statistical data. The model is quite flexible and it can be expanded for situations that are more complex.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Haiyan Yuan ◽  
Jihong Shen ◽  
Cheng Song

A split-step theta (SST) method is introduced and used to solve the nonlinear neutral stochastic delay differential equations (NSDDEs). The mean square asymptotic stability of the split-step theta (SST) method for nonlinear neutral stochastic delay differential equations is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the split-step theta method withθ∈(1/2,1]is asymptotically mean square stable for all positive step sizes, and the split-step theta method withθ∈[0,1/2]is asymptotically mean square stable for some step sizes. It is also proved in this paper that the split-step theta (SST) method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Lin Hu ◽  
Siqing Gan

A class of drift-implicit one-step schemes are proposed for the neutral stochastic delay differential equations (NSDDEs) driven by Poisson processes. A general framework for mean-square convergence of the methods is provided. It is shown that under certain conditions global error estimates for a method can be inferred from estimates on its local error. The applicability of the mean-square convergence theory is illustrated by the stochastic θ-methods and the balanced implicit methods. It is derived from Theorem 3.1 that the order of the mean-square convergence of both of them for NSDDEs with jumps is 1/2. Numerical experiments illustrate the theoretical results. It is worth noting that the results of mean-square convergence of the stochastic θ-methods and the balanced implicit methods are also new.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Bahar Akhtari

Abstract Numerical analysis of stochastic delay differential equations has been widely developed but frequently for the cases where the delay term has a simple feature. In this paper, we aim to study a more general case of delay term which has not been much discussed so far. We mean the case where the delay term takes random values. For this purpose, a new continuous split-step scheme is introduced to approximate the solution and then convergence in the mean-square sense is investigated. Moreover, given a test equation, the mean-square asymptotic stability of the scheme is presented. Numerical examples are provided to further illustrate the obtained theoretical results.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


Sign in / Sign up

Export Citation Format

Share Document