scholarly journals A cell atlas of chromatin accessibility across 25 adult human tissues

2021 ◽  
Author(s):  
Kai Zhang ◽  
James D. Hocker ◽  
Michael Miller ◽  
Xiaomeng Hou ◽  
Joshua Chiou ◽  
...  

SUMMARYCurrent catalogs of regulatory sequences in the human genome are still incomplete and lack cell type resolution. To profile the activity of human gene regulatory elements in diverse cell types and tissues in the human body, we applied single cell chromatin accessibility assays to 25 distinct human tissue types from multiple donors. The resulting chromatin maps comprising ∼500,000 nuclei revealed the status of open chromatin for over 750,000 candidate cis-regulatory elements (cCREs) in 54 distinct cell types. We further delineated cell type-specific and tissue-context dependent gene regulatory programs, and developmental stage specificity by comparing with a recent human fetal chromatin accessibility atlas. We finally used these chromatin maps to interpret the noncoding variants associated with complex human traits and diseases. This rich resource provides a foundation for the analysis of gene regulatory programs in human cell types across tissues and organ systems.

2020 ◽  
Vol 29 (11) ◽  
pp. 1922-1932
Author(s):  
Priyanka Nandakumar ◽  
Dongwon Lee ◽  
Thomas J Hoffmann ◽  
Georg B Ehret ◽  
Dan Arking ◽  
...  

Abstract Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of ‘expressed’ genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.


2019 ◽  
Author(s):  
Priyanka Nandakumar ◽  
Dongwon Lee ◽  
Thomas J. Hoffmann ◽  
Georg B. Ehret ◽  
Dan Arking ◽  
...  

AbstractHundreds of loci have been associated with blood pressure traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ∼100,000 Genetic Epidemiology Research on Aging (GERA) study participants. In the present study, we subsequently focused on determining putative regulatory regions for these and other tissues of relevance to blood pressure, to both fine-map these loci by pinpointing genes and variants of functional interest within them, and to identify any novel genes.We constructed maps of putative cis-regulatory elements using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Sequence variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. In order to identify genes of interest, we aggregate these variants in these putative cis-regulatory elements within 50Kb of the start or end of genes considered as “expressed” in these tissues or cell types using publicly available gene expression data, and use the deltaSVM scores as weights in the well-known group-wise sequence kernel association test (SKAT). We test for association with both blood pressure traits as well as expression within these tissues or cell types of interest, and identify several genes, including MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B, and PPCDC. Although our study centers on blood pressure traits, we additionally examined two known genes, SCN5A and NOS1AP involved in the cardiac trait QT interval, in the Atherosclerosis Risk in Communities Study (ARIC), as a positive control, and observed an expected heart-specific effect. Thus, our method may be used to identify variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.Author SummarySequence change in genes (“variants”) are linked to the presence and severity of different traits or diseases. However, as genes may be expressed in different tissues and at different times and degrees, using this information is expected to more accurately identify genes of interest. Variants within the genes are essential, but also in the sequences (“regulatory elements”) that control the genes’ expression in different tissues or cell types. In this study, we aim to use this information about expression and variants potentially involved in gene expression regulation to better pinpoint genes and variants in regulatory elements of interest for blood pressure regulation. We do so by taking advantage of such data that are publicly available, and use methods to combine information about variants in aggregate within a gene’s putative regulatory elements in tissues thought to be relevant for blood pressure, and identify several genes, meant to enable experimental follow-up.


Author(s):  
Hanqing Liu ◽  
Jingtian Zhou ◽  
Wei Tian ◽  
Chongyuan Luo ◽  
Anna Bartlett ◽  
...  

SummaryMammalian brain cells are remarkably diverse in gene expression, anatomy, and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. We carried out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single nucleus DNA methylation sequencing to profile 110,294 nuclei from 45 regions of the mouse cortex, hippocampus, striatum, pallidum, and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements, and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types, and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, an artificial neural network model was constructed that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data allowed prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse brain.


Author(s):  
Tiit Örd ◽  
Kadri Õunap ◽  
Lindsey Stolze ◽  
Rédouane Aherrahrou ◽  
Valtteri Nurminen ◽  
...  

Rationale: Genome-wide association studies (GWAS) have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cis-regulatory elements (CREs) but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of CREs, to understand transcription factors establishing cell identity and to interpret CAD-relevant, non-coding genetic variation. Methods and Results: We used single nucleus ATAC-seq to generate DNA accessibility maps in > 7,000 cells derived from human atherosclerotic lesions. We identified five major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, NK/T-cells and B-cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single cell co-accessibility and cis-eQTL information, we prioritized putative target genes and candidate regulatory elements for ~30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD GWAS variants using epigenetic QTL analysis in primary human aortic endothelial cells and STARR-Seq massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal SNP(s) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying snATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by non-coding GWAS variants.


Author(s):  
Zhen Miao ◽  
Michael S. Balzer ◽  
Ziyuan Ma ◽  
Hongbo Liu ◽  
Junnan Wu ◽  
...  

AbstractDetermining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response.Here, we profiled open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We define key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrated that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells followed a more complex differentiation, where Hfn4a was associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease identified critical cell types, developmental stages, genes, and regulatory mechanisms.We provide a global single cell resolution view of chromatin accessibility of kidney development. The dataset is available via interactive public websites.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7612 ◽  
Author(s):  
Silvia Domcke ◽  
Andrew J. Hill ◽  
Riza M. Daza ◽  
Junyue Cao ◽  
Diana R. O’Day ◽  
...  

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


Nature ◽  
2021 ◽  
Vol 598 (7879) ◽  
pp. 120-128 ◽  
Author(s):  
Hanqing Liu ◽  
Jingtian Zhou ◽  
Wei Tian ◽  
Chongyuan Luo ◽  
Anna Bartlett ◽  
...  

AbstractMammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer–gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


2020 ◽  
Author(s):  
Ying Lei ◽  
Mengnan Cheng ◽  
Zihao Li ◽  
Zhenkun Zhuang ◽  
Liang Wu ◽  
...  

Non-human primates (NHP) provide a unique opportunity to study human neurological diseases, yet detailed characterization of the cell types and transcriptional regulatory features in the NHP brain is lacking. We applied a combinatorial indexing assay, sci-ATAC-seq, as well as single-nuclei RNA-seq, to profile chromatin accessibility in 43,793 single cells and transcriptomics in 11,477 cells, respectively, from prefrontal cortex, primary motor cortex and the primary visual cortex of adult cynomolgus monkey Macaca fascularis. Integrative analysis of these two datasets, resolved regulatory elements and transcription factors that specify cell type distinctions, and discovered area-specific diversity in chromatin accessibility and gene expression within excitatory neurons. We also constructed the dynamic landscape of chromatin accessibility and gene expression of oligodendrocyte maturation to characterize adult remyelination. Furthermore, we identified cell type-specific enrichment of differentially spliced gene isoforms and disease-associated single nucleotide polymorphisms. Our datasets permit integrative exploration of complex regulatory dynamics in macaque brain tissue at single-cell resolution.


2019 ◽  
Author(s):  
Daniel Murphy ◽  
Andrew. E.O. Hughes ◽  
Karen A. Lawrence ◽  
Connie A. Myers ◽  
Joseph C. Corbo

AbstractMulticellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the divergence of the bipolar transcriptome from that of photoreceptors.


2017 ◽  
Author(s):  
Daniel Hüebschmann ◽  
Nils Kurzawa ◽  
Sebastian Steinhauser ◽  
Philipp Rentzsch ◽  
Stephen Krämer ◽  
...  

AbstractMetazoans are crucially dependent on multiple layers of gene regulatory mechanisms which allow them to control gene expression across developmental stages, tissues and cell types. Multiple recent research consortia have aimed to generate comprehensive datasets to profile the activity of these cell type- and condition-specific regulatory landscapes across many different cell lines and primary cells. However, extraction of genes or regulatory elements specific to certain entities from these datasets remains challenging. We here propose a novel method based on non-negative matrix factorization for disentangling and associating huge multi-assay datasets including chromatin accessibility and gene expression data. Taking advantage of implementations of NMF algorithms in the GPU CUDA environment full datasets composed of tens of thousands of genes as well as hundreds of samples can be processed without the need for prior feature selection to reduce the input size. Applying this framework to multiple layers of genomic data derived from human blood cells we unravel mechanisms of regulation of cell type-specific expression in T-cells and monocytes.


Sign in / Sign up

Export Citation Format

Share Document