scholarly journals Dopamine and serotonin interplay for valence-based spatial learning

2021 ◽  
Author(s):  
Carlos Wert-Carvajal ◽  
Melissa Reneaux ◽  
Tatjana Tchumatchenko ◽  
Claudia Clopath

AbstractDopamine and serotonin are important modulators of synaptic plasticity and their action has been linked to our ability to learn the positive or negative outcomes or valence learning. In the hippocampus, both neuromodulators affect long-term synaptic plasticity but play different roles in the encoding of uncertainty or predicted reward. Here, we examine the differential role of these modulators on learning speed and cognitive flexibility in a navigational model. We compare two reward-modulated spike time-dependent plasticity (R-STDP) learning rules to describe the action of these neuromodulators. Our results show that the interplay of dopamine (DA) and serotonin (5-HT) improves overall learning performance and can explain experimentally reported differences in spatial task performance. Furthermore, this system allows us to make predictions regarding spatial reversal learning.

2018 ◽  
Vol 25 (3) ◽  
pp. 208-226 ◽  
Author(s):  
Zahid Padamsey ◽  
William J. Foster ◽  
Nigel J. Emptage

Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Kintscher ◽  
Christian Wozny ◽  
Friedrich W. Johenning ◽  
Dietmar Schmitz ◽  
Jörg Breustedt

1996 ◽  
Vol 76 (3) ◽  
pp. 2111-2114 ◽  
Author(s):  
X. Y. Lin ◽  
D. L. Glanzman

1. Activation of sensory neurons at 2 Hz for 15 min induces long-term depression (LTD) of isolated Aplysia sensorimotor synapses in cell culture. 2. Prior infusion of the Ca2+ chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic motor neuron blocks the induction of LTD, but not short-term synaptic depression. 3. Invertebrate central synapses possess the capacity for LTD. This form of long-term synaptic plasticity may play an important role in learning in Aplysia.


2017 ◽  
Vol 82 (3) ◽  
pp. 243-256 ◽  
Author(s):  
A. A. Borodinova ◽  
A. B. Zuzina ◽  
P. M. Balaban

2018 ◽  
Vol 40 (5) ◽  
pp. 12-15
Author(s):  
Alexis Bédécarrats ◽  
David L. Glanzman

A fundamental assumption in modern psychology and neuroscience is that memory is stored as physical changes in the brain. More than a century ago, the famous neuroanatomist Ramón Y Cajal (see the article entitled “Santiago Ramón y Cajal, the ultimate scientist?” in this issue of The Biochemist) postulated that changes in the strength of synaptic connections between neurons were the physical substrate for memory. Extensive experimental evidence has since established the dominance of this connectionist view, referred to as the “synaptic plasticity” model. However, although the synaptic plasticity model broadly accords with the results of neurobiological studies of learning and memory, it does not fully account for the extraordinary resilience of memory despite the significant loss of synapses during such phenomena as development, trauma and ageing. Here, we will focus on the newly discovered role of small non-coding RNAs (ncRNAs) as potential master regulators of learning-induced epigenesis, neuronal plasticity and, ultimately, memory. In support of this idea, recent data from our lab indicate that RNA can promote the transfer of long-term memory from a trained to an untrained (naïve) animal.


2010 ◽  
Vol 104 (3) ◽  
pp. 1216-1218 ◽  
Author(s):  
Ian Wenker

Recently, Henneberger and colleagues blocked hippocampal long-term synaptic potentiation (LTP) induction by “clamping” intracellular calcium concentration of individual CA1 astrocytes, suggesting calcium-dependent gliotransmitter release from astocytes plays a role in hippocampal LTP induction. However, using transgenic mice to manipulate astrocytic calcium, Agulhon and colleagues demonstrated no effect on LTP induction. Until the question of how intracellular calcium causes gliotransmitter release is answered, the role of astrocytes in synaptic plasticity will be incompletely understood.


2018 ◽  
Author(s):  
Anne Bergt ◽  
Anne E. Urai ◽  
Tobias H. Donner ◽  
Lars Schwabe

At any time, we are processing thousands of stimuli, but only few of them will be remembered hours or days later. Is there any way to predict which ones? Here, we show that the pupil response to ongoing stimuli, an indicator of physiological arousal, is a reliable predictor of long-term memory for these stimuli, over at least one day. Pupil dilation was tracked while participants performed visual and auditory encoding tasks. Memory was tested immediately after encoding and 24 hours later. Irrespective of the encoding modality, trial-by-trial variations in pupil dilation predicted which stimuli were recalled in the immediate and 24 hours-delayed tests. These results show that our eyes may provide a window into the formation of long-term memories. Furthermore, our findings underline the important role of central arousal systems in the rapid formation of memories in the brain, possibly by gating synaptic plasticity mechanisms.


Sign in / Sign up

Export Citation Format

Share Document