scholarly journals Intracellular Ca2+ Release and Synaptic Plasticity: A Tale of Many Stores

2018 ◽  
Vol 25 (3) ◽  
pp. 208-226 ◽  
Author(s):  
Zahid Padamsey ◽  
William J. Foster ◽  
Nigel J. Emptage

Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.

2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael Kintscher ◽  
Christian Wozny ◽  
Friedrich W. Johenning ◽  
Dietmar Schmitz ◽  
Jörg Breustedt

1996 ◽  
Vol 76 (3) ◽  
pp. 2111-2114 ◽  
Author(s):  
X. Y. Lin ◽  
D. L. Glanzman

1. Activation of sensory neurons at 2 Hz for 15 min induces long-term depression (LTD) of isolated Aplysia sensorimotor synapses in cell culture. 2. Prior infusion of the Ca2+ chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic motor neuron blocks the induction of LTD, but not short-term synaptic depression. 3. Invertebrate central synapses possess the capacity for LTD. This form of long-term synaptic plasticity may play an important role in learning in Aplysia.


2019 ◽  
Vol 71 (4) ◽  
pp. 1239-1248 ◽  
Author(s):  
Julián García Bossi ◽  
Krishna Kumar ◽  
María Laura Barberini ◽  
Gabriela Díaz Domínguez ◽  
Yossmayer Del Carmen Rondón Guerrero ◽  
...  

Abstract As sessile organisms, plants have evolved mechanisms to adapt to variable and rapidly fluctuating environmental conditions. Calcium (Ca2+) in plant cells is a versatile intracellular second messenger that is essential for stimulating short- and long-term responses to environmental stresses through changes in its concentration in the cytosol ([Ca2+]cyt). Increases in [Ca2+]cyt direct the strength and length of these stimuli. In order to terminate them, the cells must then remove the cytosolic Ca2+ against a concentration gradient, either taking it away from the cell or storing it in organelles such as the endoplasmic reticulum (ER) and/or vacuoles. Here, we review current knowledge about the biological roles of plant P-type Ca2+-ATPases as potential actors in the regulation of this cytosolic Ca2+ efflux, with a focus the IIA ER-type Ca2+-ATPases (ECAs) and the IIB autoinhibited Ca2+-ATPases (ACAs). While ECAs are analogous proteins to animal sarcoplasmic-endoplasmic reticulum Ca2+-ATPases (SERCAs), ACAs are equivalent to animal plasma membrane-type ATPases (PMCAs). We examine their expression patterns in cells exhibiting polar growth and consider their appearance during the evolution of the plant lineage. Full details of the functions and coordination of ECAs and ACAs during plant growth and development have not yet been elucidated. Our current understanding of the regulation of fluctuations in Ca2+ gradients in the cytoplasm and organelles during growth is in its infancy, but recent technological advances in Ca2+ imaging are expected to shed light on this subject.


2008 ◽  
Vol 28 (9) ◽  
pp. 2896-2907 ◽  
Author(s):  
Geneviève Lebeau ◽  
Marjolaine Maher-Laporte ◽  
Lisa Topolnik ◽  
Charles E. Laurent ◽  
Wayne Sossin ◽  
...  

ABSTRACT Staufen1 (Stau1) is an RNA-binding protein involved in transport, localization, decay, and translational control of mRNA. In neurons, it is present in cell bodies and also in RNA granules which are transported along dendrites. Dendritic mRNA localization might be involved in long-term synaptic plasticity and memory. To determine the role of Stau1 in synaptic function, we examined the effects of Stau1 down-regulation in hippocampal slice cultures using small interfering RNA (siRNA). Biolistic transfection of Stau1 siRNA resulted in selective down-regulation of Stau1 in slice cultures. Consistent with a role of Stau1 in transporting mRNAs required for synaptic plasticity, Stau1 down-regulation impaired the late form of chemically induced long-term potentiation (L-LTP) without affecting early-LTP, mGluR1/5-mediated long-term depression, or basal evoked synaptic transmission. Stau1 down-regulation decreased the amplitude and frequency of miniature excitatory postsynaptic currents, suggesting a role in maintaining efficacy at hippocampal synapses. At the cellular level, Stau1 down-regulation shifted spine shape from regular to elongated spines, without changes in spine density. The change in spine shape could be rescued by an RNA interference-resistant Stau1 isoform. Therefore, Stau1 is important for processing and/or transporting in dendrites mRNAs that are critical in regulation of synaptic strength and maintenance of functional connectivity changes underlying hippocampus-dependent learning and memory.


2018 ◽  
Vol 69 (3) ◽  
pp. 688-692
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Gheorghe Rogobete ◽  
Simona Nita ◽  
Radu Bertici ◽  
...  

The issue addressed relates to an area of 1891694 ha of which 1183343 ha are agricultural land (62, 56) located in the south-west of Romania and refer to the use of soil chemical and physical properties as an acceptor for certain crop systems, with minimal undesirable effects both for plants to be grown, as well as soil characteristics and groundwater surface quality. It is therefore necessary on a case-by-case basis, measure stoc or rect the acidic reaction by periodic or alkaline calculations, the improvement of plant nutrition conditions through ameliorative fertilization and the application of measures to improve the physical state, sufficient justification for the need to develop short and long term strategies for the protection and conservation of edifying factors and the need to respect the frequency of field and laboratory investigations at all 8x8 km grids of the National Soil-Grounds Monitoring System (organized by I.C.P.A.) and completing it with the relevant pedological and agrochemical studies.


2020 ◽  
Vol 26 (40) ◽  
pp. 5128-5133
Author(s):  
Kate Levenberg ◽  
Wade Edris ◽  
Martha Levine ◽  
Daniel R. George

Epidemiologic studies suggest that the lifetime prevalence of bipolar spectrum disorders ranges from 2.8 to 6.5 percent of the population. To decrease morbidity and mortality associated with disease progression, pharmacologic intervention is indicated for the majority of these patients. While a number of effective treatment regimens exist, many conventional medications have significant side effect profiles that adversely impact patients’ short and long-term well-being. It is thus important to continue advancing and improving therapeutic options available to patients. This paper reviews the limitations of current treatments and examines the chemical compound Linalool, an alcohol found in many plant species, that may serve as an effective mood stabilizer. While relatively little is known about Linalool and bipolar disorder, the compound has been shown to have antiepileptic, anti-inflammatory, anxiolytic, anti-depressive, and neurotrophic effects, with mechanisms that are comparable to current bipolar disorder treatment options.


Author(s):  
Dean Keith Simonton

Although psychologists typically see creativity as an individual-level event, sociologists and cultural anthropologists are more likely to view it as a sociocultural phenomenon. This phenomenon takes place at the level of relatively large and enduring collectives, such as cultures, nations, and even whole civilizations. This chapter reviews the extensive research on such macro-level creativity. The review begins with a historical overview before turning to the cross-sectional research on the creative Ortgeist, a subject that encompasses the factors that influence the relative creativity of both preliterate cultures and entire modern nations. From there the chapter turns to role of the Zeitgeist in affecting the creativity of civilizations across time—the rise and fall of creative activity. This research examines both quantitative and qualitative causes that operate both short- and long-term.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 148
Author(s):  
Alessandra Coscia ◽  
Flaminia Bardanzellu ◽  
Elisa Caboni ◽  
Vassilios Fanos ◽  
Diego Giampietro Peroni

In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 514
Author(s):  
Tarek Hatoum ◽  
Robert S. Sheldon

Syncope accounts for up to 2% of emergency department visits and results in the hospitalization of 12–86% of patients. There is often a low diagnostic yield, with up to 50% of hospitalized patients being discharged with no clear diagnosis. We will outline a structured approach to the syncope patient in the emergency department, highlighting the evidence supporting the role of clinical judgement and the initial electrocardiogram (ECG) in making the preliminary diagnosis and in safely identifying the patients at low risk of short- and long-term adverse events or admitting the patient if likely to benefit from urgent intervention. Clinical decision tools and additional testing may aid in further stratifying patients and may guide disposition. While hospital admission does not seem to offer additional mortality benefit, the efficient utilization of outpatient testing may provide similar diagnostic yield, preventing unnecessary hospitalizations.


Sign in / Sign up

Export Citation Format

Share Document