scholarly journals Coordination of -1 Programmed Ribosomal Frameshifting by Transcript and Nascent Chain Features Revealed by Deep Mutational Scanning

2021 ◽  
Author(s):  
Patrick J. Carmody ◽  
Matthew H. Zimmer ◽  
Charles P. Kuntz ◽  
Haley R. Harrington ◽  
Kate E. Duckworth ◽  
...  

SummaryProgrammed ribosomal frameshifting (PRF) is a translational recoding mechanism that enables the synthesis of multiple polypeptides from a single transcript. In the alphavirus structural polyprotein, -1PRF is coordinated by a “slippery” sequence in the transcript, an RNA stem-loop, and a conformational transition in the nascent polypeptide chain. To characterize each of these effectors, we measured the effects of 4,530 mutations on -1PRF by deep mutational scanning. While most mutations within the slip-site and stem-loop disrupt -1PRF, mutagenic effects upstream of the slip-site are far more variable. Molecular dynamics simulations of polyprotein biogenesis suggest many of these mutations alter stimulatory forces on the nascent chain through their effects on translocon-mediated cotranslational folding. Finally, we provide evidence suggesting the coupling between cotranslational folding and -1PRF depends on the translation kinetics upstream of the slip-site. These findings demonstrate how -1PRF is coordinated by features within both the transcript and nascent chain.

2020 ◽  
Vol 295 (20) ◽  
pp. 6798-6808 ◽  
Author(s):  
Haley R. Harrington ◽  
Matthew H. Zimmer ◽  
Laura M. Chamness ◽  
Veronica Nash ◽  
Wesley D. Penn ◽  
...  

Viruses maximize their genetic coding capacity through a variety of biochemical mechanisms, including programmed ribosomal frameshifting (PRF), which facilitates the production of multiple proteins from a single mRNA transcript. PRF is typically stimulated by structural elements within the mRNA that generate mechanical tension between the transcript and ribosome. However, in this work, we show that the forces generated by the cotranslational folding of the nascent polypeptide chain can also enhance PRF. Using an array of biochemical, cellular, and computational techniques, we first demonstrate that the Sindbis virus structural polyprotein forms two competing topological isomers during its biosynthesis at the ribosome-translocon complex. We then show that the formation of one of these topological isomers is linked to PRF. Coarse-grained molecular dynamics simulations reveal that the translocon-mediated membrane integration of a transmembrane domain upstream from the ribosomal slip site generates a force on the nascent polypeptide chain that scales with observed frameshifting. Together, our results indicate that cotranslational folding of this viral protein generates a tension that stimulates PRF. To our knowledge, this constitutes the first example in which the conformational state of the nascent polypeptide chain has been linked to PRF. These findings raise the possibility that, in addition to RNA-mediated translational recoding, a variety of cotranslational folding or binding events may also stimulate PRF.


2019 ◽  
Author(s):  
Haley R. Harrington ◽  
Matthew H. Zimmer ◽  
Laura M. Chamness ◽  
Veronica Nash ◽  
Wesley D. Penn ◽  
...  

ABSTRACTViruses maximize their genetic coding capacity through a variety of biochemical mechanisms including programmed ribosomal frameshifting (PRF), which facilitates the production of multiple proteins from a single transcript. PRF is typically stimulated by structural elements within the mRNA that generate mechanical tension between the transcript and ribosome. However, in this work we show that the forces generated by the cotranslational folding of the nascent polypeptide chain can also enhance PRF. Using an array of biochemical, cellular, and computational techniques, we first demonstrate that the Sindbis virus structural polyprotein forms two competing topological isomers during biosynthesis at the ribosome-translocon complex. We then show that the formation of one of these topological isomers is linked to PRF. Coarse-grained molecular dynamic simulations reveal that the translocon-mediated membrane integration of a transmembrane domain upstream from the ribosomal slip-site generates a force on the nascent polypeptide chain that scales with observed frameshifting. Together, our results demonstrate that cotranslational folding of this protein generates a tension that stimulates PRF. To our knowledge, this constitutes the first example in which the conformational state of the nascent chain has been linked to PRF. These findings raise the possibility that, in addition to RNA-mediated translational recoding, a variety of cotranslational folding and/ or binding events may also stimulate PRF.


2017 ◽  
Vol 73 (6) ◽  
pp. 509-521 ◽  
Author(s):  
Abid Javed ◽  
John Christodoulou ◽  
Lisa D. Cabrita ◽  
Elena V. Orlova

Protein folding, a process that underpins cellular activity, begins co-translationally on the ribosome. During translation, a newly synthesized polypeptide chain enters the ribosomal exit tunnel and actively interacts with the ribosome elements – the r-proteins and rRNA that line the tunnel – prior to emerging into the cellular milieu. While understanding of the structure and function of the ribosome has advanced significantly, little is known about the process of folding of the emerging nascent chain (NC). Advances in cryo-electron microscopy are enabling visualization of NCs within the exit tunnel, allowing early glimpses of the interplay between the NC and the ribosome. Once it has emerged from the exit tunnel into the cytosol, the NC (still attached to its parent ribosome) can acquire a range of conformations, which can be characterized by NMR spectroscopy. Using experimental restraints within molecular-dynamics simulations, the ensemble of NC structures can be described. In order to delineate the process of co-translational protein folding, a hybrid structural biology approach is foreseeable, potentially offering a complete atomic description of protein folding as it occurs on the ribosome.


2019 ◽  
Author(s):  
Grant Kemp ◽  
Ola B. Nilsson ◽  
Pengfei Tian ◽  
Robert B. Best ◽  
Gunnar von Heijne

AbstractProteins synthesized in the cell can begin to fold during translation before the entire polypeptide has been produced, which may be particularly relevant to the folding of multidomain proteins. Here, we study the cotranslational folding of adjacent domains from the cytoskeletal protein α-spectrin using Force Profile Analysis (FPA). Specifically, we investigate how the cotranslational folding behavior of the R15 and R16 domains are affected by their neighboring R14 and R16, and R15 and R17 domains, respectively. Our results show that the domains impact each other’s folding in distinct ways that may be important for the efficient assembly of α-spectrin, and may reduce its dependence on chaperones. Furthermore, we directly relate the experimentally observed yield of full-length protein in the FPA assay to the force exerted by the folding protein in pN. By combining pulse-chase experiments to measure the rate at which the arrested protein is converted into full-length protein with a Bell model of force-induced rupture, we estimate that the R16 domain exerts a maximal force on the nascent chain of ∼15 pN during cotranslational folding.SignificanceIn living cells, proteins are produced in a sequential way by ribosomes. This vectoral process allows the growing protein chain to start to fold before translation has been completed. Thereby, cotranslational protein folding can be significantly different than the folding of a full-length protein in isolation. Here we show how structurally similar repeat domains, normally produced as parts of a single long polypeptide, affect the cotranslational folding of their neighbors. This provides insight into how the cell may efficiently produce multidomain proteins, paving the way for future studies in vivo or with chaperones. We also provide an estimated magnitude of the mechanical force on the nascent chain generated by cotranslational folding, calculated from biochemical measurements and molecular dynamics simulations.


2011 ◽  
Vol 10 (03) ◽  
pp. 359-370 ◽  
Author(s):  
JUAN PANG ◽  
HU YANG ◽  
JING MA ◽  
RONGSHI CHENG

Poly(N-alkylacrylamide) is a group of thermo-sensitive polymers that include poly (N-isopropylacrylamide), poly(N-n-propylacrylamide), poly(N-isopropylmethacryl-amide), and so on. The polymers exhibit different levels of lower critical solution temperatures (LCST) in aqueous solutions. In this article, their monomers and oligomers with 10 repeating units are selected, respectively, to demonstrate the cause of different LCST levels of the polymers in aqueous solutions using molecular dynamics simulations and quantum mechanics calculations. The monomers have functional groups of different steric volume that greatly affect the conformational transition of chains and LCST levels of the polymers. A branched chain of N-propyl group in N-isopropylacrylamide and an additional methyl group at α-carbon in N-isopropylmethacrylamide both increase the steric effect, making it more difficult for monomers to draw closer and resulting in higher LCST levels of the polymers. In addition, the simulated results from their corresponding oligomers exhibit the similar trend to those from the monomers.


2020 ◽  
Author(s):  
Marija Liutkute ◽  
Manisankar Maiti ◽  
Ekaterina Samatova ◽  
Jörg Enderlein ◽  
Marina V. Rodnina

ABSTRACTNascent polypeptides begin to fold in the constrained space of the ribosomal peptide exit tunnel. Here we use force profile analysis (FPA) and photo-induced energy-transfer fluorescence correlation spectroscopy (PET-FCS) to show how a small α-helical domain, the N-terminal domain of HemK, folds cotranslationally. Compaction starts vectorially as soon as the first α-helical segments are synthesized. As nascent chain grows, emerging helical segments dock onto each other and continue to rearrange at the vicinity of the ribosome. Inside or in the proximity of the ribosome, the nascent peptide undergoes structural fluctuations on the μs time scale. The fluctuations slow down as the domain moves away from the ribosome. Folding mutations have little effect on folding within the exit tunnel, but abolish the final domain stabilization. The results show the power of FPA and PET-FCS in solving the trajectory of cotranslational protein folding and in characterizing the dynamic properties of folding intermediates.


2020 ◽  
Vol 117 (3) ◽  
pp. 1485-1495 ◽  
Author(s):  
Amir Bitran ◽  
William M. Jacobs ◽  
Xiadi Zhai ◽  
Eugene Shakhnovich

Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.


Sign in / Sign up

Export Citation Format

Share Document