scholarly journals Temperature and O2, but not CO2, interact to affect aerobic performance of European sea bass (Dicentrarchus labrax)

2021 ◽  
Author(s):  
Daniel W. Montgomery ◽  
Stephen D. Simpson ◽  
William Davison ◽  
Harriet R. Goodrich ◽  
Georg H. Engelhard ◽  
...  

AbstractClimate change causes warming, decreased O2, and increased CO2 in marine systems and responses of organisms will depend on interactive effects between these factors. We provide the first experimental assessment of the interactive effects of warming (14 to 22°C), reduced O2 (∼3 – 21 kPa O2), and increased CO2 (∼400 or ∼1000 µatm ambient CO2) on four indicators of aerobic performance (standard metabolic rate, SMR, maximum metabolic rate, MMR, aerobic scope, and hypoxia tolerance, O2crit), blood chemistry, and O2 transport (P50) of a marine fish, the European sea bass (Dicentrarchus labrax). Warming increased SMR and O2crit (i.e. reduced hypoxia tolerance) as well as MMR in normoxia but there was an interactive effect with O2 so that hypoxia caused larger reductions in MMR and aerobic scope at higher temperatures. Increasing CO2 had minimal effects on SMR, MMR and O2crit and did not show interactive effects with temperature or O2 for any measured variables. Aerobic performance was not linked to changes in blood chemistry or P50. Despite lack of effects of CO2 on aerobic performance, increased CO2 induced 30% mortality of fish exercised in low O2 at 22°C indicating important threshold effects independent of aerobic performance. Overall, our results show temperature and O2, but not CO2, interact to affect aerobic performance of sea bass, disagreeing with predictions of the oxygen- and capacity-limited thermal tolerance hypothesis.

2018 ◽  
Author(s):  
Emily Slesinger ◽  
Alyssa Andres ◽  
Rachael Young ◽  
Brad Seibel ◽  
Vincent Saba ◽  
...  

AbstractOver the last decade, ocean temperature in the U.S. Northeast Continental Shelf (U.S. NES) has warmed faster than the global average and is associated with observed distribution changes of the northern stock of black sea bass (Centropristis striata). Mechanistic models based on physiological responses to environmental conditions can improve future habitat suitability projections. We measured maximum, resting metabolic rate, and hypoxia tolerance (Scrit) of the northern adult black sea bass stock to assess performance across the known temperature range of the species. A subset of individuals was held at 30°C for one month (30chronic°C) prior to experiments to test acclimation potential. Absolute aerobic scope (maximum – resting metabolic rate) reached a maximum of 367.21 mgO2 kg−1 hr−1 at 24.4°C while Scrit continued to increase in proportion to resting metabolic rate up to 30°C. The 30chronic°C group had a significant decrease in maximum metabolic rate and absolute aerobic scope but resting metabolic rate or Scrit were not affected. This suggests a decline in performance of oxygen demand processes (e.g. muscle contraction) beyond 24°C despite maintenance of oxygen supply. The Metabolic Index, calculated from Scrit as an estimate of potential aerobic scope, closely matched the measured factorial aerobic scope (maximum / resting metabolic rate) and declined with increasing temperature to a minimum below 3. This may represent a critical value for the species. Temperature in the U.S. NES is projected to increase above 24°C in the southern portion of the northern stock’s range. Therefore, these black sea bass will likely continue to shift north as the ocean continues to warm.


2016 ◽  
Vol 12 (1) ◽  
pp. 20150708 ◽  
Author(s):  
William Joyce ◽  
Karlina Ozolina ◽  
Florian Mauduit ◽  
Hélène Ollivier ◽  
Guy Claireaux ◽  
...  

Hypoxia is a pervasive problem in coastal environments and is predicted to have enduring impacts on aquatic ecosystems. Intraspecific variation in hypoxia tolerance is well documented in fish; however, the factors underlying this variation remain unknown. Here, we investigate the role of the heart in individual hypoxia tolerance of the European sea bass ( Dicentrarchus labrax ). We found individual whole-animal hypoxia tolerance is a stable trait in sea bass for more than 18 months (duration of study). We next examined in vitro cardiac performance and found myocardial muscle from hypoxia-tolerant individuals generated greater force, with higher rates of contraction and relaxation, than hypoxic-sensitive individuals during hypoxic exposure. Thus, whole-animal hypoxia tolerance is associated with cardiac hypoxia tolerance. As the occurrence of aquatic hypoxia is expected to increase in marine ecosystems, our experimental data suggest that cardiac performance may influence fish survival and distribution.


Author(s):  
Charles Rodde ◽  
Hugues de Verdal ◽  
Marc Vandeputte ◽  
François Allal ◽  
Julie Nati ◽  
...  

Abstract Feed efficiency (FE) is the amount of body weight gain for a given feed intake. Improving FE through selective breeding is key for sustainable finfish aquaculture but its evaluation at individual level is technically challenging. We therefore investigated whether individual routine metabolic rate (RMR) was a predictor of individual FE in the European sea bass Dicentrarchus labrax, a major species in European mariculture. The European sea bass has three genetically distinct populations across its geographical range, namely Atlantic Ocean (AT), West Mediterranean (WM) and East Mediterranean (EM). We compared FE and RMR of fish from these three populations at 18°C or 24°C. We held 200 fish (62 AT, 66 WM and 72 EM) in individual aquaria and fed them from ad libitum down to fasting. Feed efficiency was assessed for an ad libitum feeding rate and for a fixed restricted ration (1% of metabolic body weight.day -1, with metabolic body weight = body weight 0.8). After being refed 12 weeks in a common tank, individual RMR was measured over 36h by intermittent flow respirometry. There was a significant effect of temperature whereby fish at 18°C had greater mean FE (P < 0.05) and lower RMR (P < 0.001). There was also a significant effect of population, where AT fish had lower FE (P < 0.05) and greater RMR (P < 0.001) than WM and EM, at both temperatures. Despite these differences in temperature and population means, individual FE and RMR were not significantly correlated (P > 0.05). Therefore, although the results provide evidence of an association between metabolic rate and FE, RMR was not a predictor of individual FE, for reasons that require further investigation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel W. Montgomery ◽  
Stephen D. Simpson ◽  
Georg H. Engelhard ◽  
Silvana N. R. Birchenough ◽  
Rod W. Wilson

Abstract Global environmental change is increasing hypoxia in aquatic ecosystems. During hypoxic events, bacterial respiration causes an increase in carbon dioxide (CO2) while oxygen (O2) declines. This is rarely accounted for when assessing hypoxia tolerances of aquatic organisms. We investigated the impact of environmentally realistic increases in CO2 on responses to hypoxia in European sea bass (Dicentrarchus labrax). We conducted a critical oxygen (O2crit) test, a common measure of hypoxia tolerance, using two treatments in which O2 levels were reduced with constant ambient CO2 levels (~530 µatm), or with reciprocal increases in CO2 (rising to ~2,500 µatm). We also assessed blood acid-base chemistry and haemoglobin-O2 binding affinity of sea bass in hypoxic conditions with ambient (~650 μatm) or raised CO2 (~1770 μatm) levels. Sea bass exhibited greater hypoxia tolerance (~20% reduced O2crit), associated with increased haemoglobin-O2 affinity (~32% fall in P50) of red blood cells, when exposed to reciprocal changes in O2 and CO2. This indicates that rising CO2 which accompanies environmental hypoxia facilitates increased O2 uptake by the blood in low O2 conditions, enhancing hypoxia tolerance. We recommend that when impacts of hypoxia on aquatic organisms are assessed, due consideration is given to associated environmental increases in CO2.


2019 ◽  
Vol 90 ◽  
pp. 317-327 ◽  
Author(s):  
Shay Ravid-Peretz ◽  
Angelo Colorni ◽  
Galit Sharon ◽  
Michal Ucko

Sign in / Sign up

Export Citation Format

Share Document