scholarly journals Sex disparities in influenza: a multiscale network analysis

2021 ◽  
Author(s):  
Chang Wang ◽  
Lauren P Lashua ◽  
Charlise E Carter ◽  
Scott K Johnson ◽  
Minghui Wang ◽  
...  

Sex differences in the pathogenesis of infectious diseases due to differential immune responses between females and males have been well documented for multiple pathogens. However, the molecular mechanism underlying the observed sex differences in influenza virus infection remains poorly understood. In this study, we used a network-based approach to characterize the blood transcriptome collected over the course of infection with influenza A virus from female and male ferrets to dissect sex-biased gene expression. We identified significant differences in the temporal dynamics and regulation of immune responses between females and males. Our results elucidate sex-differentiated pathways involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory responses, including a female-biased IRE1/XBP1 activation and male-biased crosstalk between metabolic reprogramming and IL-1 and AP-1 pathways. Overall, our study provides molecular insights into sex differences in transcriptional regulation of immune responses and contributes to a better understanding of sex bias in influenza pathogenesis.

2021 ◽  
Author(s):  
Yujie Li ◽  
Dawei Huang ◽  
Fugen Shangguan ◽  
Lianqun Jia ◽  
Linhua Lan ◽  
...  

Abstract Protein quality control is pivotal to cellular homeostasis and integrity of cardiomyocytes for maintenance of normal heart function. The unfolded protein response (UPR) is an adaptive process to modulate protein quality control in the endoplasmic reticulum (ER) and mitochondria, and is accordingly termed UPRER and UPRmt, respectively. Lon protease (LonP1) is a highly conserved mitochondrial protease to modulate UPRmt, which is involved in regulating metabolism, mitophagy, and stress response. However, whether LonP1 regulates UPRER remains elusive. To investigate the regulation of protein quality control in cardiomyocytes, we generated cardiac-specific LonP1 deletion mice. Our findings show that LonP1 deficiency caused impaired mitochondrial respiratory function and fragmentation. Surprisingly, both UPRER and UPRmt is substantially induced in LonP1-deletion heart suggesting of LonP1 as a novel regulator of UPRER; however, the activation of UPRER occurs earlier than UPRmt in response to LonP1 deletion. Consequently, cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming of cardiomyocytes, pathological heart remodeling, as well as impeded heart function. We uncovered the novel function of LonP1 as an UPRmt mediator, and reciprocal orchestration of UPRmt and UPRER and mitochondrial dynamics regulated by LonP1 in the cardiomyocytes that is critical to maintain heart function, which offers exciting new insights into the potential therapeutic strategy for heart failure.


2020 ◽  
Author(s):  
Daniel W. Heindel ◽  
Sujeethraj Koppolu ◽  
Yue Zhang ◽  
Brian Kasper ◽  
Lawrence Meche ◽  
...  

ABSTRACTInfluenza virus infections cause a wide variety of outcomes, from mild disease to 3-5 million cases of severe illness and ~290,000-645,000 deaths annually worldwide. The molecular mechanisms underlying these disparate outcomes are currently unknown. Glycosylation within the human host plays a critical role in influenza virus biology. However, the impact these modifications have on the severity of influenza disease has not been examined. Herein, we profile the glycomic host responses to influenza virus infection as a function of disease severity using a ferret model and our lectin microarray technology. We identify the glycan epitope high mannose as a marker of influenza virus-induced pathogenesis and severity of disease outcome. Induction of high mannose is dependent upon the unfolded protein response (UPR) pathway, a pathway previously shown to associate with lung damage and severity of influenza virus infection. Also, the mannan-binding lectin (MBL2), an innate immune lectin that negatively impacts influenza outcomes, recognizes influenza virus-infected cells in a high mannose dependent manner. Together, our data argue that the high mannose motif is an infection-associated molecular pattern on host cells that may guide immune responses leading to the concomitant damage associated with severity.SIGNIFICANCEInfluenza virus infection causes a range of outcomes from mild illness to death. The molecular mechanisms leading to these differential host responses are currently unknown. Herein, we identify the induction of high mannose, a glycan epitope, as a key mediator of severe disease outcome. We propose a mechanism in which activation of the unfolded protein response (UPR) upon influenza virus infection turns on expression of high mannose, which is then recognized by the innate immune lectin MBL2, activating the complement cascade and leading to subsequent inflammation. This work is the first to systematically study host glycomic changes in response to influenza virus infection, identifying high mannose as a key feature of differential host response.


2019 ◽  
Author(s):  
Bin Lu ◽  
Fugen Shangguan ◽  
Dawei Huang ◽  
Shiwei Gong ◽  
Yingchao Shi ◽  
...  

AbstractProtein quality control is pivotal to cellular homeostasis and integrity of cardiomyocytes for maintenance of normal heart function. The unfolded protein response (UPR) is an adaptive process to modulate protein quality control in the endoplasmic reticulum (ER) and mitochondria, and is accordingly termed UPRERand UPRmt, respectively. Lon protease (LonP1) is a highly conserved mitochondrial protease to modulate UPRmt, which is involved in regulating metabolism, mitophagy, and stress response. However, whether LonP1 regulates UPRERremains elusive. To investigate the regulation of protein quality control in cardiomyocytes, we generated cardiac-specific LonP1 deletion mice. Our findings show that LonP1 deficiency caused impaired mitochondrial respiratory function and fragmentation. Surprisingly, both UPRERand UPRmtis substantially induced in LonP1-deletion heart suggesting of LonP1 as a novel regulator of UPRER; however, the activation of UPRERoccurs earlier than UPRmtin response to LonP1 deletion. Consequently, cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming of cardiomyocytes, pathological heart remodeling, as well as impeded heart function. Thus, we uncovered the novel function of LonP1 as an UPRmtmediator, and reciprocal orchestration of UPRmtand UPRERand mitochondrial dynamics regulated by LonP1 in the cardiomyocytes that is critical to maintain heart function, which offers exciting new insights into the potential therapeutic strategy for heart failure.


2014 ◽  
Author(s):  
Mohammed A Alfattah ◽  
Paul Anthony McGettigan ◽  
John Arthur Browne ◽  
Khalid M Alkhodair ◽  
Katarzyna Pluta ◽  
...  

2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


2020 ◽  
Author(s):  
Katie Mae Wilson ◽  
Aurora Burkus-Matesevac ◽  
Samuel Maddox ◽  
Christopher Chouinard

β-methylamino-L-alanine (BMAA) has been linked to the development of neurodegenerative (ND) symptoms following chronic environmental exposure through water and dietary sources. The brains of those affected by this condition, often referred to as amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), have exhibited the presence of plaques and neurofibrillary tangles (NFTs) from protein aggregation. Although numerous studies have sought to better understand the correlation between BMAA exposure and onset of ND symptoms, no definitive link has been identified. One prevailing hypothesis is that BMAA acts a small molecule ligand, complexing with critical proteins in the brain and reducing their function. The objective of this research was to investigate the effects of BMAA exposure on the native structure of ubiquitin. We hypothesized that formation of a Ubiquitin+BMAA noncovalent complex would alter the protein’s structure and folding and ultimately affect the ubiquitinproteasome system (UPS) and the unfolded protein response (UPR). Ion mobility-mass spectrometry revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, however similar complexes were identified for a range of additional amino acids. Collision induced unfolding (CIU) was used to interrogate the unfolding dynamics of native ubiquitin and these Ubq-amino acid complexes and it was determined that complexation with BMAA led to a significant alteration in native protein size and conformation, and this complex required considerably more energy to unfold. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location.


Sign in / Sign up

Export Citation Format

Share Document