scholarly journals Weevil borers affect the spatio-temporal dynamics of banana Fusarium wilt

2021 ◽  
Author(s):  
Daniel Heck ◽  
Gabriel Alves ◽  
Eduardo S. G. Mizubuti

AbstractDispersal of propagules of a pathogen has remarkable effects on the development of epidemics. Previous studies suggested that insect pests play a role in the development of Fusarium wilt (FW) epidemics in banana fields. We provided complementary evidence for the involvement of two insect pests of banana, the weevil borer (Cosmopolites sordidus L. - WB) and the false weevil borer (Metamasius hemipterus L. - FWB), in the dispersal of Fusarium oxysporum f. sp. cubense (Foc) using a comparative epidemiology approach under field conditions. Two banana plots located in a field with historical records of FW epidemics were used, one was managed with Beauveria bassiana to reduce the population of weevils, and the other was left without B. bassiana applications. The number of WB and FWB was monitored biweekly and the FW incidence was quantified bimonthly during two years. The population of WB and the incidence (6.7%) of FW in the plot managed with B. bassiana were lower than in the plot left unmanaged (13%). The monomolecular model best fitted the FW disease progress data and, as expected, the average estimated disease progress rate was lower in the plot managed with the entomopathogenic fungus (r = 0.0024) compared to the unmanaged plot (r = 0.0056). Aggregation of FW was higher in the field with WB management. WB affected the spatial and temporal dynamics of FW epidemics under field conditions and brought evidence that managing the insects may reduce FW of bananas intensity.

2021 ◽  
Vol 7 (5) ◽  
pp. 329
Author(s):  
Daniel W. Heck ◽  
Gabriel Alves ◽  
Eduardo S. G. Mizubuti

Dispersal of propagules of a pathogen has remarkable effects on the development of epidemics. Previous studies suggested that insect pests play a role in the development of Fusarium wilt (FW) epidemics in banana fields. We provided complementary evidence for the involvement of two insect pests of banana, the weevil borer (Cosmopolites sordidus L., WB) and the false weevil borer (Metamasius hemipterus L., FWB), in the dispersal of Fusarium oxysporum f. sp. cubense (Foc) using a comparative epidemiology approach under field conditions. Two banana plots located in a field with historical records of FW epidemics were used; one was managed with Beauveria bassiana to reduce the population of weevils, and the other was left without B. bassiana applications. The number of WB and FWB was monitored biweekly and the FW incidence was quantified bimonthly during two years. The population of WB and the incidence (6.7%) of FW in the plot managed with B. bassiana were lower than in the plot left unmanaged (13%). The monomolecular model best fitted the FW disease progress data, and as expected, the average estimated disease progress rate was lower in the plot managed with the entomopathogenic fungus (r = 0.002) compared to the unmanaged plot (r = 0.006). Aggregation of FW was higher in the field with WB management. WB affected the spatial and temporal dynamics of FW epidemics under field conditions. Management of the insects may reduce yield loss due to FW.


2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Kedar Dahal ◽  
Krishna P. Timilsina

The Rapid transformation of rural settlements into municipalities in Nepal has brought significant changes in land use and urban expansion patterns mostly through the conversion of agricultural land into the built-up area. The issue is studied taking a case of rapidly growing town Barahathawa Municipality of Sarlahi District. After the declaration of the municipality, several new roads have been opened and upgraded; and the municipality has well-connected to the national transportation network. After promulgated the Constitution of Nepal 2015 and elected local bodies, the municipality budget has been increased significantly as a result of increasing municipal investment in socio-economic and physical infrastructure development and environmental protection which have attracted people, goods, and services creating the zone of influence. One of the changes found in the municipality is the increasing built-up area and expansion of urban growth through the decreasing agricultural land. Urban growth has been observed taking place around the Barahathawa Bazaar and main roadsides. The built-up area in Barahathawa municipality has remarkably increased by 184% with the decrease of shrub and agricultural land within 10 years. Implications of such spatial and temporal dynamics have been a core issue of urban planning in most of the newly declared municipalities in Nepal


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi265-vi266
Author(s):  
Bethan Morris ◽  
Lee Curtin ◽  
Andrea Hawkins-Daarud ◽  
Bernard Bendok ◽  
Maciej Mrugala ◽  
...  

Abstract Glioblastomas (GBMs) are known to be complex tumors comprising multiple subpopulations of genetically-distinct cancer cells; it is thought that this genetic variation is a major factor in the lack of observed survival benefit of treatment regimes that target one of these subpopulations. The field of radiogenomics seeks to study correlations between MRI patterns and genetic features of GBM tumors. Spatial radiogenomic maps produced using machine-learning (ML) methods that are trained against information from image-localized patient biopsies identify regions where particular cancer sub-populations are predicted to occur within a GBM, thus non-invasively characterizing the regional genetic variability of these tumors. These tumor subpopulations may also interact with one another, in ways which may be of a competitive or cooperative nature to varying degrees. It is important to ascertain the nature of these interactions, as they may have implications for treatment response to targeted therapies, and characterization of the spatio-temporal dynamics of these co-evolving sub-populations will shed light on why some therapies fail. Here we combine mathematical modeling techniques and spatially-resolved radiogenomic maps to study the nature of these interactions between molecularly-distinct GBM subpopulations. We model the interactions between cell populations using a partial differential equation based formalism. The model is parameterized using radiogenomic ML maps from which we infer the nature of interactions between subpopulations. Furthermore, using maps as inputs, the model turns static maps into dynamic information, thus providing insight into how these subpopulations composing the tumor change over time and the effect this has on observed treatment response for individual patients.


2019 ◽  
Vol 20 (3) ◽  
pp. 485-494
Author(s):  
M Naveenkumar ◽  
S Domnic

The performance of an efficient and accurate action recognition system heavily depends on distinctive representations for a different class of action sequences. To address this issue, we propose an ensemble network in this paper. We design two multilayer Long Short Term Memory networks to capture spatial and temporal dynamics of the entire sequence, referred to as Spatial-distance Net (SdNet) and Temporal-distance Net (TdNet) respectively. More specifically, SdNet captures the spatial dynamics of joints within a frame and TdNet explores the temporal dynamics of joints between frames along the sequence. Finally, two nets are fused as one Ensemble network, referred to as Spatio -Temporal distance Net (STdNet) to explore both spatial and temporal dynamics. The efficacy of the proposed method is evaluated on two widely used datasets, UTD MHAD and NTU RGB+D, and the proposed STdNet achieved 91.16% and 80.03% accuracies respectively.


2021 ◽  
Author(s):  
Behnam Kazemivash ◽  
Vince D. Calhoun

AbstractObjectiveBrain parcellation is an essential aspect of computational neuroimaging research and deals with segmenting the brain into (possibly overlapping) sub-regions employed to study brain anatomy or function. In the context of functional parcellation, brain organization which is often measured via temporal metrics such as coherence, is highly dynamic. This dynamic aspect is ignored in most research, which typically applies anatomically based, fixed regions for each individual, and can produce misleading results.MethodsIn this work, we propose a novel spatio-temporal-network (5D) brain parcellation scheme utilizing a deep residual network to predict the probability of each voxel belonging to a brain network at each point in time.ResultsWe trained 53 4D brain networks and evaluate the ability of these networks to capture spatial and temporal dynamics as well as to show sensitivity to individual or group-level variation (in our case with age).ConclusionThe proposed system generates informative spatio-temporal networks that vary not only across individuals but also over time and space.SignificanceThe dynamic 5D nature of the developed approach provides a powerful framework that expands on existing work and has potential to identify novel and typically ignored findings when studying the healthy and disordered brain.


2012 ◽  
Vol 39 (No. 2) ◽  
pp. 74-80 ◽  
Author(s):  
S. Legarrea ◽  
B.M. Diaz ◽  
M. Plaza ◽  
L. Barrios ◽  
I. Morales ◽  
...  

UV-absorbing covers reduce the incidence of injurious insect pests and viruses in protected crops. In the present study, the effect of a UV-absorbing net (Bionet) on the spatio-temporal dynamics of the potato aphid on lettuce plants was evaluated. A field experiment was conducted during three seasons in two identical tunnels divided in four plots. A set of lettuce plants were artificially infested with Macrosiphum euphorbiae adults and the population was estimated by counting aphids on every plant over 7 to 9 weeks. Insect population grew exponentially but a significantly lower aphid density was present on plants grown under the UV-absorbing cover compared to a standard 50 mesh net. Similarly, in laboratory conditions, life table parameters were significantly reduced under the Bionet. Moreover, SADIE analysis showed that the spatial distribution of aphids was effectively limited under the UV-absorbing nets. Our results indicate that UV-absorbing nets should be considered as an important component of lettuce indoor cropping systems preventing pesticide applications and reducing the risk of spread of aphid-borne virus diseases.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Kamal Dev Sharma ◽  
Weidong Chen ◽  
Fred J. Muehlbauer

Genetics of resistance in chickpea accession WR-315 to Fusarium wilt was investigated, and a concise set of differentials was developed to identify races of Fusarium oxysporum f. sp. ciceris. A population of 100 F7 recombinant inbred lines (RILs) from a cross of WR-315 (resistant) and C-104 (susceptible) was used to study genetics of resistance to races 1A, 2, 3, 4, and 5 of F. oxysporum f. sp. ciceris, and a population of 26 F2 plants from a cross between the same two parents was used to study inheritance of resistance to race 2. Segregations of the RILs for resistance to each of the five races suggest that single genes in WR-315 govern resistance to each of the five races. A 1:3 resistant to susceptible ratio in the F2 population indicated that resistance in WR-315 to race 2 was governed by a single recessive gene. A race-specific slow disease progress reaction was observed in chickpea line FLIP84-92C(3) to infection by race 2, a phenomenon termed as slow wilting, that is different from previously reported late wilting with respect to latent period, disease progress rate, and final disease rating. Twenty-nine germ plasm lines (27 Cicer arietinum and two C. reticulatum) including previously used differentials were evaluated for their reactions to infection by the five races. Only eight of the 29 germ plasm lines differentiated at least one of the five races based on either resistant or susceptible reactions, whereas the remaining germ plasm lines were either susceptible or resistant to all five races or differentiated them by intermediate reactions. A concise set of eight chickpea lines comprised of four genotypes and four F7 RILs with vertical resistance was developed as differentials for race identification in F. oxysporum f. sp. ciceris. These differential lines were characterized by early appearance of wilt symptoms, and clear and consistent disease phenotypes based on no wilt or 100% wilt incidence, which offers important improvements over previously available differential sets and provides more precise and unambiguous identification of the races.


2021 ◽  
Vol 7 (8) ◽  
pp. 646
Author(s):  
Daniel W. Heck ◽  
Miguel Dita ◽  
Emerson M. Del Ponte ◽  
Eduardo S. G. Mizubuti

The effective management of Fusarium wilt of bananas (FWB) depends on the knowledge of the disease dynamics in time and space. The objectives of this work were: to estimate disease intensity and impact, and to investigate the spatial and temporal dynamics of FWB. Fields planted with Silk (n = 10), Pome (n = 17), or Cavendish (n = 3) banana subgroups were surveyed in Brazil, totaling 95 ha. In each field, all plants were visually assessed, and diseased plants were georeferenced. The incidence of FWB and the impact of the disease on the yield on a regional scale were estimated. Spatial patterns were analyzed using quadrat- and distance-based methods. FWB incidence ranged from 0.09% to 41.42%, being higher in Silk fields (median = 14.26%). Impacts of epidemics on yield ranged from 18.4 to 8192.5 kg ha−1 year−1, with an average of 1856.7 kg ha−1 year−1. The higher economic impact of the disease was observed on Silk cultivar with an average loss of USD 1974.2 ha−1 year−1. Overall, estimated losses increased on average by USD 109.8 ha−1 year−1 at each 1% of incidence. Aggregation of FWB was detected by all analytical methods in 13 fields (1 of Cavendish, 11 of Pome, and 1 of Silk). In the other 17 fields, at least one analytical method did not reject the null hypothesis of randomness. One field (5 ha), composed of six plots, was selected for spatial and temporal studies during two years with bi-monthly assessments. A sigmoidal curve represented the FWB progress and the Gompertz model best-fitted disease progress. The level of aggregation varied over time, and evidence of secondary infection to neighboring and distant plants was detected. FWB is a widespread problem in Brazil and yield losses can be of high magnitude. Epidemiology-based management strategies can now be better established.


Sign in / Sign up

Export Citation Format

Share Document