scholarly journals Cryo-electron tomography of native Drosophila tissues vitrified by plunge freezing

2021 ◽  
Author(s):  
Felix J.B. Baeuerlein ◽  
Jose C. Pastor-Pareja ◽  
Ruben Fernandez-Busnadiego

Cryo-focused ion beam (cryo-FIB) milling allows thinning vitrified cells for high resolution imaging by cryo-electron tomography (cryo-ET). However, it remains challenging to apply this workflow to tissues, as they usually require high-pressure freezing for vitrification. Here we show that dissected Drosophila tissues can be directly vitrified by plunge freezing upon a short incubation in 10% glycerol. This expedites subsequent cryo-FIB/ET, enabling systematic analyses of the molecular architecture of native tissues.

2019 ◽  
Author(s):  
Jianguo Zhang ◽  
Danyang Zhang ◽  
Lei Sun ◽  
Gang Ji ◽  
Xiaojun Huang ◽  
...  

ABSTACTCryo-electron tomography (cryo-ET) provides a promising technique to study high resolution structures of macromolecules in situ, opening a new era of structural biology. One major bottleneck of this technique is to prepare suitable cryo-lamellas of cell/tissue samples. The emergence of cryo-focused ion beam (cryo-FIB) milling technique provides a good solution of this bottleneck. However, there are still large limitations of using cryo-FIB to prepare cryo-lamella of tissue specimen because the thickness of tissue increases the difficulty of specimen freezing and cryo-FIB milling. Here we report a new workflow, VHUT-cryo-FIB (Vibratome - High pressure freezing - Ultramicrotome Trimming – cryo-FIB), aiming for efficient preparation of frozen hydrated tissue lamella for subsequent cryo-ET data collection. This workflow includes tissue slicing using vibratome, high pressure freezing, ultramicrotome cryo-trimming, cryo-FIB milling and the subsequent cryo-electron microscopy (cryo-EM). The modification of equipment in this workflow is highly eliminated. We developed two strategies with a special cryo-holder tip or carrier for loading cryo-lamella into side entry cryo-holder or Autoloader catridge. We tested this workflow using the tissue sample of rat skeleton muscle and spinach leaf and collected high quality cryo-ET tilt series, which enabled us to obtain an in situ structure of spinach ribosome by sub-tomogram averaging.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kanika Khanna ◽  
Javier Lopez-Garrido ◽  
Ziyi Zhao ◽  
Reika Watanabe ◽  
Yuan Yuan ◽  
...  

The study of bacterial cell biology is limited by difficulties in visualizing cellular structures at high spatial resolution within their native milieu. Here, we visualize Bacillus subtilis sporulation using cryo-electron tomography coupled with cryo-focused ion beam milling, allowing the reconstruction of native-state cellular sections at molecular resolution. During sporulation, an asymmetrically-positioned septum generates a larger mother cell and a smaller forespore. Subsequently, the mother cell engulfs the forespore. We show that the septal peptidoglycan is not completely degraded at the onset of engulfment. Instead, the septum is uniformly and only slightly thinned as it curves towards the mother cell. Then, the mother cell membrane migrates around the forespore in tiny finger-like projections, whose formation requires the mother cell SpoIIDMP protein complex. We propose that a limited number of SpoIIDMP complexes tether to and degrade the peptidoglycan ahead of the engulfing membrane, generating an irregular membrane front.


Author(s):  
Miroslava Schaffer ◽  
Stefan Pfeffer ◽  
Julia Mahamid ◽  
Stephan Kleindiek ◽  
Tim Laugks ◽  
...  

Abstract Cryo-focused ion beam milling of frozen hydrated cells for the production of thin lamellas in combination with cryo-electron tomography (cryo-ET) has yielded unprecedented insights into the cell interior. This method allows access to native structures deep inside cells, enabling structural studies of macromolecules in situ. However, it is only suitable for cells that can be vitrified by plunge freezing (<10 μm). Multicellular organisms and tissues are considerably thicker and high-pressure freezing is required to ensure optimal preservation. Here, we describe a preparation method for extracting lamellas from high pressure frozen samples with a new cryo-gripper tool. This in situ lift-out technique at cryo-temperatures enables cryo-ET to be performed on multicellular organisms and tissue, extending the range of applications for in situ structural biology.


2019 ◽  
Vol 25 (S2) ◽  
pp. 1306-1307
Author(s):  
Xia Li ◽  
Donghyun Park ◽  
Yunjie Chang ◽  
Abhijith Radhakrishnan ◽  
Hangjun Wu ◽  
...  

2018 ◽  
Author(s):  
Kanika Khanna ◽  
Javier Lopez-Garrido ◽  
Ziyi Zhao ◽  
Reika Watanabe ◽  
Yuan Yuan ◽  
...  

AbstractThe study of cell biology is limited by the difficulty in visualizing cellular structures at high spatial resolution within their native milieu. Here, we have visualized sporulation inBacillus subtilisusing cryo-electron tomography coupled with cryo-focused ion beam milling, a technique that allows the 3D reconstruction of cellular structures in near-native state at molecular resolution. During sporulation, an asymmetrically-positioned septum divides the cell into a larger mother cell and a smaller forespore. Subsequently, the mother cell phagocytoses the forespore in a process called engulfment, which entails a dramatic rearrangement of the peptidoglycan (PG) cell wall around the forespore. By imaging wild-type sporangia, engulfment mutants, and sporangia treated with PG synthesis inhibitors, we show that the initiation of engulfment does not entail the complete dissolution of the septal PG by the mother cell SpoIIDMP complex, as was previously thought. Instead, DMP is required to maintain a flexible septum that is uniformly and only slightly thinned at the onset of engulfment. Then, the mother cell membrane migrates around the forespore by forming tiny finger-like projections, the formation of which requires both SpoIIDMP and new PG synthesized ahead of the leading edge of the engulfing membrane. We propose a molecular model for engulfment membrane migration in which a limited number of SpoIIDMP complexes tether the membrane to and degrade the new PG ahead of the leading edge, thereby generating an irregular engulfing membrane front. Our data also reveal other structures that will provide a valuable resource for future mechanistic studies of endospore formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marie Fuest ◽  
Miroslava Schaffer ◽  
Giovanni Marco Nocera ◽  
Rodrigo I. Galilea-Kleinsteuber ◽  
Jan-Erik Messling ◽  
...  

AbstractWe present a microfluidic platform for studying structure-function relationships at the cellular level by connecting video rate live cell imaging with in situ microfluidic cryofixation and cryo-electron tomography of near natively preserved, unstained specimens. Correlative light and electron microscopy (CLEM) has been limited by the time required to transfer live cells from the light microscope to dedicated cryofixation instruments, such as a plunge freezer or high-pressure freezer. We recently demonstrated a microfluidic based approach that enables sample cryofixation directly in the light microscope with millisecond time resolution, a speed improvement of up to three orders of magnitude. Here we show that this cryofixation method can be combined with cryo-electron tomography (cryo-ET) by using Focused Ion Beam milling at cryogenic temperatures (cryo-FIB) to prepare frozen hydrated electron transparent sections. To make cryo-FIB sectioning of rapidly frozen microfluidic channels achievable, we developed a sacrificial layer technique to fabricate microfluidic devices with a PDMS bottom wall <5 µm thick. We demonstrate the complete workflow by rapidly cryo-freezing Caenorhabditis elegans roundworms L1 larvae during live imaging in the light microscope, followed by cryo-FIB milling and lift out to produce thin, electron transparent sections for cryo-ET imaging. Cryo-ET analysis of initial results show that the structural preservation of the cryofixed C. elegans was suitable for high resolution cryo-ET work. The combination of cryofixation during live imaging enabled by microfluidic cryofixation with the molecular resolution capabilities of cryo-ET offers an exciting avenue to further advance space-time correlative light and electron microscopy (st-CLEM) for investigation of biological processes at high resolution in four dimensions.


Author(s):  
Tobias Zachs ◽  
Andreas Schertel ◽  
João Medeiros ◽  
Gregor L Weiss ◽  
Jannik Hugener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document