scholarly journals A crosstalk between E2F1 and GLP-1 signaling pathways modulates insulin secretion

2021 ◽  
Author(s):  
Cyril Bourouh ◽  
Emilie Courty ◽  
Gianni Pasquetti ◽  
Xavier Gromada ◽  
Nabil Rabhi ◽  
...  

AbstractCompromised β-cell function contributes to type 2 diabetes (T2D) development. The glucagon like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential toward T2D treatment, notably by improving β-cell functions. Recent data have shown that the transcription factor E2f1, besides its role as a cell cycle regulator, is involved in glucose homeostasis by modulating β-cell mass, function and identity. Here, we demonstrate a crosstalk between the E2F1, phosphorylation of retinoblastoma protein (pRb) and Glp-1 signaling pathways. We found that β-cell specific E2f1 deficient mice (E2f1β−/−) presented with impaired glucose homeostasis and decreased glucose stimulated-insulin secretion mediated by exendin 4 (i.e., GLP1R agonist), which were associated with decreased expression of Glp1r encoding Glp-1 receptor (GLP1R) in E2f1β−/− pancreatic islets. Decreasing E2F1 transcriptional activity with an E2F inhibitor in islets from nondiabetic humans decreased GLP1R levels and blunted the incretin effect of exendin 4 on insulin secretion. Conversely, overexpressing E2f1 in pancreatic β cells increased Glp1r expression associated with enhanced insulin secretion mediated by GLP1R agonist. Interestingly, kinome analysis of mouse islets demonstrated that an acute treatment with exendin 4 increased pRb phosphorylation and subsequent E2f1 transcriptional activity. This study suggests a molecular crosstalk between the E2F1/pRb and GLP1R signaling pathways that modulates insulin secretion and glucose homeostasis.

2012 ◽  
Vol 49 (1) ◽  
pp. R9-R17 ◽  
Author(s):  
Laura Marroquí ◽  
Alejandro Gonzalez ◽  
Patricia Ñeco ◽  
Ernesto Caballero-Garrido ◽  
Elaine Vieira ◽  
...  

Leptin plays an important role in the control of food intake, energy expenditure, metabolism, and body weight. This hormone also has a key function in the regulation of glucose homeostasis. Although leptin acts through central and peripheral mechanisms to modulate glucose metabolism, the pancreatic β-cell of the endocrine pancreas is a critical target of leptin actions. Leptin receptors are present in the β-cell, and their activation directly inhibits insulin secretion from these endocrine cells. The effects of leptin on insulin occur also in the long term, since this hormone inhibits insulin gene expression as well. Additionally, β-cell mass can be affected by leptin through changes in proliferation, apoptosis, or cell size. All these different functions in the β-cell are triggered by leptin as a result of the large diversity of signaling pathways that this hormone is able to activate in the endocrine pancreas. Therefore, leptin can participate in glucose homeostasis owing to different levels of modulation of the pancreatic β-cell population. Furthermore, it has been proposed that alterations in this level of regulation could contribute to the impairment of β-cell function in obesity states. In the present review, we will discuss all these issues with special emphasis on the effects and pathways of leptin signaling in the pancreatic β-cell.


2006 ◽  
Vol 190 (2) ◽  
pp. 471-482 ◽  
Author(s):  
Soo Bong Choi ◽  
Jin Sun Jang ◽  
Sang Mee Hong ◽  
Dong Wha Jun ◽  
Sunmin Park

Long-term dexamethasone (DEX) treatment is well known for its ability to increase insulin resistance in liver and adipose tissues leading to hyperinsulinemia. On the other hand, exercise enhances peripheral insulin sensitivity. However, it is not clear whether DEX and/or exercise affect β-cell mass and function in diabetic rats, and whether their effects can be associated with the modulation of the insulin/IGF-I signaling cascade in pancreatic β-cells. After an 8-week study, whole body glucose disposal rates in 90% pancreatectomized (Px) and sham-operated male rats decreased with a high dose treatment of DEX (0.1mg DEX/kg body weight/day)(HDEX) treatment, while disposal rates increased with exercise. First-phase insulin secretion was decreased and delayed by DEX via the impairment of the glucose-sensing mechanism in β-cells, while exercise reversed the impairment of first-phase insulin secretion caused by DEX, suggesting ameliorated β-cell functions. However, exercise and DEX did not alter second-phase insulin secretion except for the fact that HDEX decreased insulin secretion at 120 min during hyperglycemic clamp in Px rats. Unlike β-cell functions, DEX and exercise exhibited increased pancreatic β-cell mass in two different pathways. Only exercise, through increased proliferation and decreased apoptosis, increased β-cell mass via hyperplasia, which resulted from an enhanced insulin/IGF-I signaling cascade by insulin receptor substrate 2 induction. By contrast, DEX expanded β-cell mass via hypertrophy and neogenesis from precursor cells, rather than increasing proliferation and decreasing apoptosis. In conclusion, the improvement of β-cell function and survival via the activation of an insulin/IGF-I signaling cascade due to exercise has a crucial role in preventing the development and progression of type 2 diabetes.


Endocrinology ◽  
2015 ◽  
Vol 157 (2) ◽  
pp. 624-635 ◽  
Author(s):  
Joon Ha ◽  
Leslie S. Satin ◽  
Arthur S. Sherman

Abstract Type 2 diabetes (T2D) is generally thought to result from the combination of 2 metabolic defects, insulin resistance, which increases the level of insulin required to maintain glucose within the normal range, and failure of insulin-secreting pancreatic β-cells to compensate for the increased demand. We build on a mathematical model pioneered by Topp and colleagues to elucidate how compensation succeeds or fails. Their model added a layer of slow negative feedback to the classic insulin-glucose loop in the form of a slow, glucose-dependent birth and death law governing β-cell mass. We add to that model regulation of 2 aspects of β-cell function on intermediate time scales. The model quantifies the relative contributions of insulin action and insulin secretion defects to T2D and explains why prevention is easier than cure. The latter is a consequence of a threshold separating the normoglycemic and diabetic states (bistability), which also underlies the success of bariatric surgery and acute caloric restriction in rapidly reversing T2D. The threshold concept gives new insight into “Starling's Law of the Pancreas,” whereby insulin secretion is higher for prediabetics and early diabetics than for normal individuals.


2020 ◽  
Author(s):  
Mario A Miranda ◽  
Caryn Carson ◽  
Celine L St Pierre ◽  
Juan F Macias-Velasco ◽  
Jing W Hughes ◽  
...  

AbstractMaintenance of functional β-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause β-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and β-cell function during SM/J’s diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese SM/J mice do not show elevated β-cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese SM/J mice increase glucose stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin content. These results establish that β-cell mass expansion and improved β-cell function underlie the resolution of hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional β-cell mass can be recovered in the context of obesity.


2012 ◽  
Vol 303 (6) ◽  
pp. E752-E761 ◽  
Author(s):  
Kathryn D. Henley ◽  
Kimberly A. Gooding ◽  
Aris N. Economides ◽  
Maureen Gannon

Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.


2021 ◽  
Vol 22 (1) ◽  
pp. 421
Author(s):  
Hui Huang ◽  
Bradi R. Lorenz ◽  
Paula Horn Zelmanovitz ◽  
Catherine B. Chan

Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.


2005 ◽  
Vol 187 (2) ◽  
pp. 225-235 ◽  
Author(s):  
S K Richards ◽  
L E Parton ◽  
I Leclerc ◽  
G A Rutter ◽  
R M Smith

Treatment of type 1 diabetes by islet transplantation is currently limited by loss of functional β-cell mass after transplantation. We investigated here whether adenovirus-mediated changes in AMP-activated protein kinase (AMPK) activity, previously shown to affect insulin secretion in vitro, might affect islet graft function in vivo. In isolated mouse and rat islets, insulin secretion stimulated by 17 (vs 3) mmol/l glucose was inhibited by 36.5% (P<0.01) and 43% (P<0.02) respectively after over-expression of constitutively-active AMPK- (AMPK CA) versus null (eGFP-expressing) viruses, and glucose oxidation was decreased by 38% (P<0.05) and 26.6% (P<0.05) respectively. Increases in apoptotic index (terminal deoxynucleotide transferase-mediated deoxyuridine trisphosphate biotin nick end-labelling) (TUNEL)) were also observed in AMPK CA- (22.8 ± 3.6% TUNEL-positive cells, P<0.001), but not AMPK DN- (2.72 ± 3.9%, positive cells, P=0.05) infected islets, versus null adenovirus-treated islets (0.68 ± 0.36% positive cells). Correspondingly, transplantation of islets expressing AMPK CA into streptozotocin-diabetic C57 BL/6 mice improved glycaemic control less effectively than transplantation with either null (P<0.02) or AMPK-DN-infected (P<0.01) islets. We conclude that activation of AMPK inhibits β-cell function in vivo and may represent a target for therapeutic intervention during islet transplantation.


2021 ◽  
Author(s):  
Casey J. Bauchle ◽  
Kristen E. Rohli ◽  
Cierra K. Boyer ◽  
Vidhant Pal ◽  
Jonathan V. Rocheleau ◽  
...  

The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC to glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout mice and demonstrate these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme, cytosolic isocitrate dehydrogenase, Idh1, inhibited insulin secretion in wild type islets, but failed to impact β-cell function in β-cell CIC KO islets.<b> </b>Our data demonstrate that the mitochondrial citrate-isocitrate carrier is not required for glucose-stimulated insulin secretion, and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.


2021 ◽  
Author(s):  
Casey J. Bauchle ◽  
Kristen E. Rohli ◽  
Cierra K. Boyer ◽  
Vidhant Pal ◽  
Jonathan V. Rocheleau ◽  
...  

The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC to glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout mice and demonstrate these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme, cytosolic isocitrate dehydrogenase, Idh1, inhibited insulin secretion in wild type islets, but failed to impact β-cell function in β-cell CIC KO islets.<b> </b>Our data demonstrate that the mitochondrial citrate-isocitrate carrier is not required for glucose-stimulated insulin secretion, and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.


2017 ◽  
Vol 399 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Dawood Khan ◽  
Srividya Vasu ◽  
R. Charlotte Moffett ◽  
Victor A. Gault ◽  
Peter R. Flatt ◽  
...  

AbstractModulation of neuropeptide receptors is important for pancreatic β-cell function. Here, islet distribution and effects of the neurotensin (NT) receptor modulators, xenin and NT, was examined. Xenin, but not NT, significantly improved glucose disposal and insulin secretion, in mice. However, both peptides stimulated insulin secretion from rodent β-cells at 5.6 mmglucose, with xenin having similar insulinotropic actions at 16.7 mmglucose. In contrast, NT inhibited glucose-induced insulin secretion. Similar observations were made in human 1.1B4 β-cells and isolated mouse islets. Interestingly, similar xenin levels were recorded in pancreatic and small intestinal tissue. Arginine and glucose stimulated xenin release from islets. Streptozotocin treatment decreased and hydrocortisone treatment increased β-cell mass in mice. Xenin co-localisation with glucagon was increased by streptozotocin, but unaltered in hydrocortisone mice. This corresponded to elevated plasma xenin levels in streptozotocin mice. In addition, co-localisation of xenin with insulin was increased by hydrocortisone, and decreased by streptozotocin. Furtherin vitroinvestigations revealed that xenin and NT protected β-cells against streptozotocin-induced cytotoxicity. Xenin augmented rodent and human β-cell proliferation, whereas NT displayed proliferative actions only in human β-cells. These data highlight the involvement of NT signalling pathways for the possible modulation of β-cell function.


Sign in / Sign up

Export Citation Format

Share Document