scholarly journals Locomotion induced by medial septal glutamatergic neurons is linked to intrinsically generated persistent firing

2021 ◽  
Author(s):  
Karolína Korvasová ◽  
Felix Ludwig ◽  
Hiroshi Kaneko ◽  
Liudmila Sosulina ◽  
Tom Tetzlaff ◽  
...  

AbstractMedial septal glutamatergic neurons are active during theta oscillations and locomotor activity. Prolonged optogenetic activation of medial septal glutamatergic neurons drives theta oscillations and locomotion for extended periods of time outlasting the stimulus duration. However, the cellular and circuit mechanisms supporting the maintenance of both theta oscillations and locomotion remain elusive. Specifically, it remains unclear whether the presence of theta oscillations is a necessary prerequisite for locomotion, and whether neuronal activity within the medial septum underlies its persistence. Here we show that a persistent theta oscillation can be induced by a brief transient activation of glutamatergic neurons. Moreover, persistent locomotion is initiated even if the theta oscillation is abolished by blocking synaptic transmission in the medial septum. We observe persistent spiking of medial septal neurons that outlasts the stimulus for several seconds, both in vivo and in vitro. This persistent activity is driven by intrinsic excitability of glutamatergic neurons.

Author(s):  
Paulina Kazmierska-Grebowska ◽  
Marcin Siwiec ◽  
Joanna Ewa Sowa ◽  
Caban Bartosz ◽  
Tomasz Kowalczyk ◽  
...  

Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with various disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ionic) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel activator, and antiepileptic and neuroprotective agent, would affect hippocampal theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 and CA1 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine also depressed hippocampal theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in hippocampal neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.


Author(s):  
Paulina Kazmierska-Grebowska ◽  
Marcin Siwiec ◽  
Joanna Ewa Sowa ◽  
Bartosz Caban ◽  
Tomasz Kowalczyk ◽  
...  

Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with various disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ionic) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel activator, and antiepileptic and neuroprotective agent, would affect hippocampal theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 and CA1 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine also depressed hippocampal theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in hippocampal neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.


2021 ◽  
Vol 22 (24) ◽  
pp. 13604
Author(s):  
Paulina Kazmierska-Grebowska ◽  
Marcin Siwiec ◽  
Joanna Ewa Sowa ◽  
Bartosz Caban ◽  
Tomasz Kowalczyk ◽  
...  

Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Anna R Moore ◽  
Sarah E Richards ◽  
Katelyn Kenny ◽  
Leandro Royer ◽  
Urann Chan ◽  
...  

Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.


Research ◽  
2015 ◽  
Vol 2 ◽  
Author(s):  
TE Morgan ◽  
DA Davis ◽  
N Iwata ◽  
JA Tanner ◽  
D Snyder ◽  
...  

2014 ◽  
Vol 112 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Justin Elstrott ◽  
Kelly B. Clancy ◽  
Haani Jafri ◽  
Igor Akimenko ◽  
Daniel E. Feldman

Whisker deflection evokes sparse, low-probability spiking among L2/3 pyramidal cells in rodent somatosensory cortex (S1), with spiking distributed nonuniformly between more and less responsive cells. The cellular and local circuit factors that determine whisker responsiveness across neurons are unclear. To identify these factors, we used two-photon calcium imaging and loose-seal recording to identify more and less responsive L2/3 neurons in S1 slices in vitro, during feedforward recruitment of the L2/3 network by L4 stimulation. We observed a broad gradient of spike recruitment thresholds within local L2/3 populations, with low- and high-threshold cells intermixed. This recruitment gradient was significantly correlated across different L4 stimulation sites, and between L4-evoked and whisker-evoked responses in vivo, indicating that a substantial component of responsiveness is independent of tuning to specific feedforward inputs. Low- and high-threshold L2/3 pyramidal cells differed in L4-evoked excitatory synaptic conductance and intrinsic excitability, including spike threshold and the likelihood of doublet spike bursts. A gradient of intrinsic excitability was observed across neurons. Cells that spiked most readily to L4 stimulation received the most synaptic excitation but had the lowest intrinsic excitability. Low- and high-threshold cells did not differ in dendritic morphology, passive membrane properties, or L4-evoked inhibitory conductance. Thus multiple gradients of physiological properties exist across L2/3 pyramidal cells, with excitatory synaptic input strength best predicting overall spiking responsiveness during network recruitment.


2004 ◽  
Vol 1008 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Shu-Huei Hsiao ◽  
Dustin W DuBois ◽  
Rajesh C Miranda ◽  
Gerald D Frye

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Charanya Sampathkumar ◽  
Yuan-Ju Wu ◽  
Mayur Vadhvani ◽  
Thorsten Trimbuch ◽  
Britta Eickholt ◽  
...  

Mutations in the MECP2 gene cause the neurodevelopmental disorder Rett syndrome (RTT). Previous studies have shown that altered MeCP2 levels result in aberrant neurite outgrowth and glutamatergic synapse formation. However, causal molecular mechanisms are not well understood since MeCP2 is known to regulate transcription of a wide range of target genes. Here, we describe a key role for a constitutive BDNF feed forward signaling pathway in regulating synaptic response, general growth and differentiation of glutamatergic neurons. Chronic block of TrkB receptors mimics the MeCP2 deficiency in wildtype glutamatergic neurons, while re-expression of BDNF quantitatively rescues MeCP2 deficiency. We show that BDNF acts cell autonomous and autocrine, as wildtype neurons are not capable of rescuing growth deficits in neighboring MeCP2 deficient neurons in vitro and in vivo. These findings are relevant for understanding RTT pathophysiology, wherein wildtype and mutant neurons are intermixed throughout the nervous system.


2019 ◽  
Author(s):  
Lisa M. Smits ◽  
Stefano Magni ◽  
Kamil Grzyb ◽  
Paul MA. Antony ◽  
Rejko Krüger ◽  
...  

AbstractHuman stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulatein vitrothe organisation and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA-sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, and glutamatergic neurons. Recapitulating thesein vivofeatures makes hMOs an excellent tool forin vitrodisease phenotyping and drug discovery.


2007 ◽  
Vol 106 (6) ◽  
pp. 1168-1176 ◽  
Author(s):  
Misha Perouansky ◽  
Harald Hentschke ◽  
Mark Perkins ◽  
Robert A. Pearce

Background Drug-induced temporary amnesia is one of the principal goals of general anesthesia. The nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6, also termed 2N) impairs hippocampus-dependent learning at relative, i.e., lipophilicity-corrected, concentrations similar to isoflurane. Hippocampal theta oscillations facilitate mnemonic processes in vivo and synaptic plasticity (a cellular model of memory) in vitro and are thought to represent a circuit level phenomenon that supports memory encoding. Therefore, the authors investigated the effects of F6 and isoflurane on theta oscillations (4-12 Hz). Methods Thirteen adult rats were implanted with multichannel depth electrodes to measure the microelectroencephalogram and were exposed to a range of concentrations of isoflurane and F6 spanning the concentrations that produce amnesia. Five of these animals also underwent control experiments without drug injection. The authors recorded the behavioral state and hippocampal field potentials. They confirmed the electrode location postmortem by histology. Results The tested concentrations for isoflurane and F6 ranged from 0.035% to 0.77% and from 0.5% to 3.6%, respectively. Isoflurane increased the fraction of time that the animals remained immobile, consistent with sedation, whereas F6 had the opposite effect. Electroencephalographic power in the theta band was less when the animals were immobile than when they explored their environment. F6 suppressed the power of oscillations in the theta band. Isoflurane slowed theta oscillations without reducing total power in the theta band. Conclusions Drug-induced changes in theta oscillations may be a common basis for amnesia produced by F6 and isoflurane. The different patterns suggest that these drugs alter network activity by acting on different molecular and/or cellular targets.


Sign in / Sign up

Export Citation Format

Share Document