scholarly journals GLUCOCORTICOIDS REGULATE MITOCHONDRIAL FATTY ACID OXIDATION IN FETAL CARDIOMYOCYTES

2021 ◽  
Author(s):  
Jessica R. Ivy ◽  
Roderic N. Carter ◽  
Jin-Feng Zhao ◽  
Charlotte Buckley ◽  
Helena Urquijo ◽  
...  

ABSTRACTThe late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesised that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes in vivo. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 hours later. Instead, at E17.5, fatty acid oxidation genes were down-regulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was down-regulated in vivo in fetal hearts at E17.5, 24 hours after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a sheep model of preterm birth, both GR and PGC-1α were down-regulated in fetal heart. These data suggest endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by down-regulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility.

2019 ◽  
Author(s):  
Helena Urquijo ◽  
Emma N Panting ◽  
Roderick N Carter ◽  
Emma J Agnew ◽  
Caitlin S Wyrwoll ◽  
...  

2021 ◽  
Author(s):  
Rory P. Cunningham ◽  
Mary P. Moore ◽  
Ryan J. Daskek ◽  
Grace M. Meers ◽  
Takamune Takahashi ◽  
...  

Regulation of endothelial nitric oxide synthase (eNOS) in hepatocytes may be an important target in nonalcoholic fatty liver disease (NAFLD) development and progression to steatohepatitis (NASH). In this study, we show genetic deletion and viral knockdown of hepatocyte-specific eNOS exacerbated hepatic steatosis and inflammation, decreased hepatic mitochondrial fatty acid oxidation and respiration, increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission, and impaired the hepatic mitophagic (BNIP3 and LC3II) response. Conversely, overexpressing eNOS in hepatocytes in vitro and in vivo increased hepatocyte mitochondrial respiration and attenuated western diet induced NASH. Moreover, patients with elevated NAFLD activity score (histology score of worsening steatosis, hepatocyte ballooning, and inflammation) exhibited reduced hepatic eNOS expression which correlated with reduced hepatic mitochondrial fatty acid oxidation and lower hepatic protein expression of mitophagy protein BNIP3. The current study reveals an important molecular role for hepatocyte-specific eNOS as a key regulator of NAFLD/NASH susceptibility and mitochondrial quality control with direct clinical correlation to patients with NASH.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
YEOJIN PARK ◽  
Elly Ok ◽  
Hyo Jung Lee ◽  
Ji Yeon Kim ◽  
Mi Kyung Kim ◽  
...  

2018 ◽  
Vol 46 (1) ◽  
pp. 187-202 ◽  
Author(s):  
Jaume Amengual ◽  
Francisco J. García-Carrizo ◽  
Andrea Arreguín ◽  
Hana Mušinović ◽  
Nuria Granados ◽  
...  

Background/Aims: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Methods: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Results: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. Conclusion: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ling Tao ◽  
Yi Liu ◽  
Chao Xin ◽  
Weidong Huang ◽  
Lijian Zhang ◽  
...  

FNDC5 is a hormone secreted by myocytes that could reduce obesity and insulin resistance, However, the exact effect of FNDC5 on glucose and lipid metabolism remain poorly identified; More importantly, the signaling pathways that mediate the metabolic effects of FNDC5 is completely unknown. Here we showed that FNDC5 stimulates β-oxidation and glucose uptake in C2C12 cells in a dose- and time-dependent fashion in vitro (n=8, all P<0.01). In vivo study revealed that FNDC5 also enhanced glucose tolerance in diabetic mice and increased the glucose uptake evidenced by increased [18F] FDG accumulation in hearts by PET scan (n=6, all P<0.05). FNDC5 decreased the expression of gluconeogenesis related molecules (PEPCK and G6Pase) and increased the phosphorylation of ACC, a key modulator of fatty-acid oxidation, both in hepatocytes and C2C12 cells (n=3, all P<0.05). In parallel with its stimulation of β-oxidation and glucose uptake, FNDC5 increased the phosphorylation of AMPK both in hepatocytes and C2C12 cells in a dose- and time-dependent fashion in vitro and in vivo. More importantly, the β-oxidation and glucose uptake, the expression of PEPCK and G6Pase and the phosphorylation of ACC induced by FNDC5 were attenuated by AMPK inhibitor in hepatocytes and C2C12 cells (P<0.05). Most importantly, the FNDC5 induced glucose uptake and phosphorylation of ACC were attenuated in AMPK-DN mice (n=6, all P<0.05). The glucose-lowering effect of FNDC5 in diabetic mice was also attenuated by AMPK inhibitor. Our data presents the direct evidence that FNDC5 stimulates glucose utilization and fatty-acid oxidation by AMPK signaling pathway, suggesting that FNDC5 be a novel pharmacological approach for type 2 diabetes.


1975 ◽  
Vol 229 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Crass MF ◽  
GM Pieper

The metabolism of cardiac lipids and glycogen in hypoxic and well-oxygenated perfused rat hearts was studied in the presence or absence of epinephrine. Heart lipids were pre-labeled in vivo with [1-14C]palmitate. Triglyceride disappearance (measured chemically and radiochemically) was observed in well-oxygenated hearts and was stimulated by epinephrine (4.1 X 10(-7)M). Utilization of tissue triglycerides was inhibited in hypoxic hearts in the presence or absence of added epinephrine. Hypoxia resulted in a small increase in tissue 14C-free fatty acids and inhibition of 14C-labeled triglyceride fatty acid oxidation. Epinephrine had no stimulatory effect on fatty acid oxidation in hypoxic hearts. Utilization of 14C-labeled phospholipids (and total phospholipids) was similar in well-oxygenated and hypoxic hearts with or without added epinephrine. These results suggested that the antilipolytic effects of hypoxia were predominant over the lipolytic effects of epinephrine. Glycogenolysis was stimulated threefold by epinephrine in well-oxygenated hearts. Hypoxia alone was a potent stimulus to glycogenolysis. Addition of epinephrine to perfusates of hypoxic hearts resulted in a slight enhancement of glycogenolysis.


2000 ◽  
Vol 279 (2) ◽  
pp. E259-E265 ◽  
Author(s):  
David Chien ◽  
David Dean ◽  
Asish K. Saha ◽  
J. P. Flatt ◽  
Neil B. Ruderman

Malonyl-CoA acutely regulates fatty acid oxidation in liver in vivo by inhibiting carnitine palmitoyltransferase. Thus rapid increases in the concentration of malonyl-CoA, accompanied by decreases in long-chain fatty acyl carnitine (LCFA-carnitine) and fatty acid oxidation have been observed in liver of fasted-refed rats. It is less clear that it plays a similar role in skeletal muscle. To examine this question, whole body respiratory quotients (RQ) and the concentrations of malonyl-CoA and LCFA-carnitine in muscle were determined in 48-h-starved rats before and at various times after refeeding. RQ values were 0.82 at baseline and increased to 0.93, 1.0, 1.05, and 1.09 after 1, 3, 12, and 18 h of refeeding, respectively, suggesting inhibition of fat oxidation in all tissues. The increases in RQ at each time point correlated closely ( r = 0.98) with increases (50–250%) in the concentration of malonyl-CoA in soleus and gastrocnemius muscles and decreases in plasma FFA and muscle LCFA-carnitine levels. Similar changes in malonyl-CoA and LCFA-carnitine were observed in liver. The increases in malonyl-CoA in muscle during refeeding were not associated with increases in the assayable activity of acetyl-CoA carboxylase (ACC) or decreases in the activity of malonyl-CoA decarboxylase (MCD). The results suggest that, during refeeding after a fast, decreases in fatty acid oxidation occur rapidly in muscle and are attributable both to decreases in plasma FFA and increases in the concentration of malonyl-CoA. They also suggest that the increase in malonyl-CoA in this situation is not due to changes in the assayable activity of either ACC or MCD or an increase in the cytosolic concentration of citrate.


2007 ◽  
Vol 137 (10) ◽  
pp. 2252-2257 ◽  
Author(s):  
Shinji Murosaki ◽  
Tae Ryong Lee ◽  
Koutarou Muroyama ◽  
Eui Seok Shin ◽  
Si Young Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document