Lipid and glycogen metabolism in the hypoxic heart: effects of epinephrine

1975 ◽  
Vol 229 (4) ◽  
pp. 885-889 ◽  
Author(s):  
Crass MF ◽  
GM Pieper

The metabolism of cardiac lipids and glycogen in hypoxic and well-oxygenated perfused rat hearts was studied in the presence or absence of epinephrine. Heart lipids were pre-labeled in vivo with [1-14C]palmitate. Triglyceride disappearance (measured chemically and radiochemically) was observed in well-oxygenated hearts and was stimulated by epinephrine (4.1 X 10(-7)M). Utilization of tissue triglycerides was inhibited in hypoxic hearts in the presence or absence of added epinephrine. Hypoxia resulted in a small increase in tissue 14C-free fatty acids and inhibition of 14C-labeled triglyceride fatty acid oxidation. Epinephrine had no stimulatory effect on fatty acid oxidation in hypoxic hearts. Utilization of 14C-labeled phospholipids (and total phospholipids) was similar in well-oxygenated and hypoxic hearts with or without added epinephrine. These results suggested that the antilipolytic effects of hypoxia were predominant over the lipolytic effects of epinephrine. Glycogenolysis was stimulated threefold by epinephrine in well-oxygenated hearts. Hypoxia alone was a potent stimulus to glycogenolysis. Addition of epinephrine to perfusates of hypoxic hearts resulted in a slight enhancement of glycogenolysis.

1975 ◽  
Vol 228 (2) ◽  
pp. 618-627 ◽  
Author(s):  
Crass MF ◽  
JC Shipp ◽  
GM Pieper

The effects of epinephrine and norepinephrine on triglyceride and glycogen metabolism and contractility were studied in isolated perfused working rat hearts. Hearts with lipids prelabeled in vivo with [1-14C]palmitate were perfused with bicarbonate buffer containing 5.5 mM glucose, with or without 0.6 mM palmitate (3% albumin), and varying concentrations of catecholamines. Direct evidence for catecholamine-stimulated myocardial triglyceride lipolysis was obtained and, for the first time, was shown to be concentration-dependent. Also, catecholamines enhanced heart triglyceride fatty acid oxidation in concentration-dependent fashion. Stimulation of lipolysis and oxidation was observed only in hearts perfused with buffer containing glucose as the sole substrate, and was inhibited in the presence of 0.6 mM palmitate. Palmitate inhibited net glycogenolysis in the absence of catecholamines, but had little effect on epinephrine-stimulated glycogenolysis. Therefore, with free fatty acids present, mobilization of endogenous triglycerides to meet the increased metabolic demands of catecholamine stimulation is minimized; this is due, possibly, to enhanced utilization of exogenous free fatty acids and to inhibition of net lipolysis.


1973 ◽  
Vol 57 (1) ◽  
pp. 109-116 ◽  
Author(s):  
J. V. Anastasia ◽  
R. L. McCarl

This paper reports the determination of the ability of rat heart cells in culture to release [14C]palmitate from its triglyceride and to oxidize this fatty acid and free [14C]palmitate to 14CO2 when the cells are actively beating and when they stop beating after aging in culture. In addition, the levels of glucose, glycogen, and ATP were determined to relate the concentration of these metabolites with beating and with cessation of beating. When young rat heart cells in culture are actively beating, they oxidize free fatty acids at a rate parallel with cellular ATP production. Both fatty acid oxidation and ATP production remain constant while the cells continue to beat. Furthermore, glucose is removed from the growth medium by the cells and stored as glycogen. When cultured cells stop beating, a decrease is seen in their ability to oxidize free fatty acids and to release them from their corresponding triglycerides. Concomitant with decreased fatty acid oxidation is a decrease in cellular levels of ATP until beating ceases. Midway between initiation of cultures and cessation of beating the cells begin to mobilize the stored glycogen. When the growth medium is supplemented with cortisol acetate and given to cultures which have ceased to beat, reinitiation of beating occurs. Furthermore, all decreases previously observed in ATP levels, fatty acid oxidation, and esterase activity are restored.


1997 ◽  
Vol 267 (2) ◽  
pp. 143-154 ◽  
Author(s):  
G Martı́nez ◽  
G Jiménez-Sánchez ◽  
P Divry ◽  
C Vianey-Saban ◽  
E Riudor ◽  
...  

1994 ◽  
Vol 72 (10) ◽  
pp. 1110-1119 ◽  
Author(s):  
Maruf Saddik ◽  
Gary D. Lopaschuk

Although myocardial triacylglycerol may be a potentially important source of fatty acids for β-oxidation in diabetes, few studies have measured triacylglycerol turnover directly in hearts from diabetic animals. In this study, myocardial triacylglycerol turnover was directly measured in isolated working hearts from streptozotocin-induced acutely diabetic rats. Hearts were initially perfused in the presence of 1.2 mM [14C]palmitate and 11 mM glucose for 1 h (pulse) to label the endogenous lipid pools, followed by a 10-min washout perfusion. Hearts were then perfused for another hour (chase) with buffer containing 11 mM glucose ± 1.2 mM [3H]palmitate. During the chase, both 14CO2 and 3H2O production (measures of endogenous and exogenous fatty acid oxidation, respectively) were determined. A second series of hearts were perfused using the same protocol, except that unlabeled palmitate was used during the pulse and 11 mM [14C(U),5-3H]glucose ± unlabeled palmitate was present during the chase. Both glycolysis (3H2O production) and glucose oxidation (14CO2 production) rates were measured in this series. Myocardial triacylglycerol levels were significantly higher in the diabetic rat hearts (77.5 ± 4.6 vs. 33.7 ± 4.1 μmol fatty acid/g dry mass in control hearts). In diabetic rat hearts chased with 1.2 mM palmitate, triacylglycerol lipolysis was increased, although endogenous [14C]palmitate oxidation rates were similar to control hearts and contributed 10.1% of overall ATP production. The majority of fatty acids derived from triacylglycerol lipolysis were released into the perfusate. In the absence of palmitate, both triacylglycerol lipolysis and endogenous [14C]palmitate oxidation rates were significantly increased in diabetic rat hearts, compared with control. Under these conditions, triacylglycerol fatty acid oxidation contributed 70% of steady-state ATP production in diabetic rat hearts, compared with 34% in control hearts. These results demonstrate that in diabetic rat hearts myocardial triacylglycerol lipolysis is significantly increased and can readily be used as a source of fatty acids for mitochondrial β-oxidation.Key words: heart, triacylglycerols, fatty acid oxidation, glucose oxidation, glycolysis.


1985 ◽  
Vol 249 (4) ◽  
pp. H723-H728 ◽  
Author(s):  
J. F. Hutter ◽  
H. M. Piper ◽  
P. G. Spieckerman

Myocardial fatty acid oxidation has been reported to be accompanied by an elevated O2 consumption compared with carbohydrate oxidation. The exact amount of this additional O2 consumption is controversial. Different investigators have observed an O2 wasting effect that is too large to be explained by the different ATP-to-O2 ratios of these substrates. With the use of isolated perfused rat hearts, O2 consumption and hemodynamic measurements were computer analyzed to provide on-line estimates of the ratio between O2 consumption and demand (EQ). Increasing palmitate or octanoate concentrations decreased the respiratory quotient, which was accompanied by a disproportionate increase of EQ. Inhibition of fatty acid oxidation by an inhibitor of acylcarnitine transferase or a blockade of mitochondrial thiolase caused a drastic reduction of fatty acid oxidation. The fatty acid-induced enhancement of O2 consumption was decreased to a much smaller extent, indicating that there are two different mechanisms responsible for the O2-wasting effect, one that depends on mitochondrial fatty acid oxidation and another that is not affected by an inhibition of this pathway.


2004 ◽  
Vol 279 (19) ◽  
pp. 19574-19579 ◽  
Author(s):  
Aneta E. Reszko ◽  
Takhar Kasumov ◽  
France David ◽  
Kathryn A. Jobbins ◽  
Katherine R. Thomas ◽  
...  

Little is known about the sources of acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of mitochondrial fatty acid oxidation in the heart. In perfused rat hearts, we previously showed that malonyl-CoA is labeled from both carbohydrates and fatty acids. This study was aimed at assessing the mechanisms of incorporation of fatty acid carbons into malonyl-CoA. Rat hearts were perfused with glucose, lactate, pyruvate, and a fatty acid (palmitate, oleate or docosanoate). In each experiment, substrates were13C-labeled to yield singly or/and doubly labeled acetyl-CoA. The mass isotopomer distribution of malonyl-CoA was compared with that of the acetyl moiety of citrate, which reflects mitochondrial acetyl-CoA. In the presence of labeled glucose or lactate/pyruvate, the13C labeling of malonyl-CoA was up to 2-fold lower than that of mitochondrial acetyl-CoA. However, in the presence of a fatty acid labeled in its first acetyl moiety, the13C labeling of malonyl-CoA was up to 10-fold higher than that of mitochondrial acetyl-CoA. The labeling of malonyl-CoA and of the acetyl moiety of citrate is compatible with peroxisomal β-oxidation forming C12and C14acyl-CoAs and contributing >50% of the fatty acid-derived acetyl groups that end up in malonyl-CoA. This fraction increases with the fatty acid chain length. By supplying acetyl-CoA for malonyl-CoA synthesis, peroxisomal β-oxidation may participate in the control of mitochondrial fatty acid oxidation in the heart. In addition, this pathway may supply some acyl groups used in protein acylation, which is increasingly recognized as an important regulatory mechanism for many biochemical processes.


2007 ◽  
Vol 32 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Julien Lamontagne ◽  
Pellegrino Masiello ◽  
Mariannick Marcil ◽  
Viviane Delghingaro-Augusto ◽  
Yan Burelle ◽  
...  

Deteriorating islet β-cell function is key in the progression of an impaired glucose tolerance state to overt type 2 diabetes (T2D), a transition that can be delayed by exercise. We have previously shown that trained rats are protected from heart ischemia–reperfusion injury in correlation with an increase in cardiac tissue fatty-acid oxidation. This trained metabolic phenotype, if induced in the islet, could also prevent β-cell failure in the pathogenesis of T2D. To assess the effect of training on islet lipid metabolism and insulin secretion, female Sprague–Dawley rats were exercised on a treadmill for 90 min/d, 4 d/week, for 10 weeks. Islet fatty-acid oxidation, the expression of key lipid metabolism genes, and glucose-stimulated insulin secretion were determined in freshly isolated islets from trained and sedentary control rats after a 48 h rest period from the last exercise. Although this moderate training reduced plasma glycerol, free fatty acids, and triglyceride levels by about 40%, consistent with reduced lipolysis from adipose tissue, it did not alter islet fatty-acid oxidation, nor the islet expression of key transcription factors and enzymes of lipid metabolism. The training also had no effect on glucose-stimulated insulin secretion or its amplification by free fatty acids. In summary, chronic exercise training did not cause an intrinsic change in islet lipid metabolism. Training did, however, substantially reduce the exposure of islets to exogenous lipid, thereby providing a potential mechanism by which exercise can prevent islet β-cell failure leading to T2D.


1979 ◽  
Vol 182 (2) ◽  
pp. 593-598 ◽  
Author(s):  
P Ferré ◽  
J P Pégorier ◽  
D H Williamson ◽  
J Girard

Metabolic interactions between fatty acid oxidation and gluconeogenesis were investigated in vivo in 16h-old newborn rats under various nutritional states. As the newborn rat has no white adipose tissue, starvation from birth induces a low rate of hepatic fatty acid oxidation. Hepatic gluconeogenesis in inhibited in the starved newborn rat when compared with the suckling rat, which receives fatty acids through the milk, at the steps catalysed by pyruvate carboxylase and glyceraldehyde 3-phosphate dehydrogenase. These inhibitions are rapidly reversed by triacylglycerol feeding. Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites. It is concluded that, in the newborn rat in vivo, hepatic fatty acids oxidation can increase the gluconeogenic flux by providing the acetyl-CoA necessary for the reaction catalysed by pyruvate carboxylase and the reducing equivalents (NADH) to displace the reversible reaction catalysed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis.


Sign in / Sign up

Export Citation Format

Share Document