scholarly journals The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties

2021 ◽  
Author(s):  
Aneta Tarczewska ◽  
Marta Kolonko-Adamska ◽  
Mirosław Zarębski ◽  
Jerzy W Dobrucki ◽  
Andrzej Ożyhar ◽  
...  

One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.

2004 ◽  
Vol 78 (15) ◽  
pp. 8281-8288 ◽  
Author(s):  
M. A. Mir ◽  
A. T. Panganiban

ABSTRACT Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is encoded by the smallest of the three genome segments (S). N protein is the principal structural component of the viral capsid and is central to the hantavirus replication cycle. We examined intermolecular N-protein interaction and RNA binding by using bacterially expressed Sin Nombre virus N protein. N assembles into di- and trimeric forms. The mono- and dimeric forms exist transiently and assemble into a trimeric form. In contrast, the trimer is highly stable and does not efficiently disassemble into the mono- and dimeric forms. The purified N-protein trimer is able to discriminate between viral and nonviral RNA molecules and, interestingly, recognizes and binds with high affinity the panhandle structure composed of the 3′ and 5′ ends of the genomic RNA. In contrast, the mono- and dimeric forms of N bind RNA to form a complex that is semispecific and salt sensitive. We suggest that trimerization of N protein is a molecular switch to generate a protein complex that can discriminate between viral and nonviral RNA molecules during the early steps of the encapsidation process.


2005 ◽  
Vol 79 (22) ◽  
pp. 13848-13855 ◽  
Author(s):  
Ping-Kun Hsieh ◽  
Shin C. Chang ◽  
Chu-Chun Huang ◽  
Ting-Ting Lee ◽  
Ching-Wen Hsiao ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm3. Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3′ noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1109 ◽  
Author(s):  
Assia Mouhand ◽  
Marco Pasi ◽  
Marjorie Catala ◽  
Loussiné Zargarian ◽  
Anissa Belfetmi ◽  
...  

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.


2013 ◽  
Vol 88 (2) ◽  
pp. 1271-1280 ◽  
Author(s):  
M. Sun ◽  
I. F. Grigsby ◽  
R. J. Gorelick ◽  
L. M. Mansky ◽  
K. Musier-Forsyth

2005 ◽  
Vol 79 (20) ◽  
pp. 13166-13172 ◽  
Author(s):  
Vincent H. J. Leonard ◽  
Alain Kohl ◽  
Jane C. Osborne ◽  
Angela McLees ◽  
Richard M. Elliott

ABSTRACT The bunyavirus nucleocapsid protein, N, plays a central role in viral replication in encapsidating the three genomic RNA segments to form functional templates for transcription and replication by the viral RNA-dependent RNA polymerase. Here we report functional mapping of interacting domains of the Bunyamwera orthobunyavirus N protein by yeast and mammalian two-hybrid systems, immunoprecipitation experiments, and chemical cross-linking studies. N forms a range of multimers from dimers to high-molecular-weight structures, independently of the presence of RNA. Deletion of the N- or C-terminal domains resulted in loss of activity in a minireplicon assay and a decreased capacity for N to form higher multimers. Our data suggest a head-to-head and tail-to-tail multimerization model for the orthobunyavirus N protein.


2021 ◽  
Author(s):  
Ian Seim ◽  
Christine A. Roden ◽  
Amy S. Gladfelter

AbstractViruses must efficiently and specifically package their genomes while excluding cellular nucleic acids and viral sub-genomic fragments. Some viruses use specific packaging signals, which are conserved sequence/structure motifs present only in the full-length genome. Recent work has shown that viral proteins important for packaging can undergo liquid-liquid phase separation (LLPS), where one or two viral nucleic acid binding proteins condense with the genome. The compositional simplicity of viral components lends itself well to theoretical modeling compared to more complex cellular organelles. Viral LLPS can be limited to one or two viral proteins and a single genome that is enriched in LLPS-promoting features. In our previous study, we observed that LLPS-promoting sequences of SARS-CoV-2 are located at the 5’ and 3’ ends of the genome, whereas the middle of the genome is predicted to consist mostly of solubilizing elements. Is this arrangement sufficient to drive single genome packaging, genome compaction, and genome cyclization? We addressed these questions using a coarse-grained polymer model, LASSI, to study the LLPS of nucleocapsid protein with RNA sequences that either promote LLPS or solubilization. With respect to genome compaction and cyclization, we find the most optimal arrangement restricts LLPS-promoting elements to the 5’ and 3’ ends of the genome, consistent with the native spatial patterning. Single genome packaging is possible for diverse arrangements of LLPS-promoting sequences in the genome, but only in limited conditions at the edge of the phase boundary. These results suggest that many and variably positioned LLPS promoting signals can support packaging in the absence of a singular packaging signal which argues against necessity of such a feature. We hypothesize that this model should be generalizable to multiple viruses as well as cellular organelles like paraspeckles, which enrich specific, long RNA sequences in a defined order.Statement of significanceThe COVID-19 pandemic has motivated research of the basic mechanisms of coronavirus replication. A major challenge faced by viruses such as SARS-CoV-2 is the selective packaging of a large genome in a relatively small capsid while excluding host and subgenomic nucleic acids. Genomic RNA of SARS-CoV-2 can condense with the Nucleocapsid (N)-protein, a protein component critical for packaging of many viruses. Notably, certain regions of the genomic RNA drive condensation of N-protein while other regions solubilize it. Here, we explore how the spatial patterning of these opposing elements promotes single genome compaction, packaging, and cyclization. This model informs future in silico experiments addressing spatial patterning of genomic features that are experimentally intractable because of the extensive size of the genome.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1977 ◽  
Author(s):  
Roberto Corradini

Polyamide analogs of DNA, or peptide nucleic acid (PNA), were first proposed in 1991 by a group of chemists and biochemists in a memorable Science paper [1].[…]


2008 ◽  
Vol 83 (5) ◽  
pp. 2255-2264 ◽  
Author(s):  
Chung-Ke Chang ◽  
Yen-Lan Hsu ◽  
Yuan-Hsiang Chang ◽  
Fa-An Chao ◽  
Ming-Chya Wu ◽  
...  

ABSTRACT The nucleocapsid protein (N) of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genomic RNA and is crucial for viability. However, the RNA-binding mechanism is poorly understood. We have shown previously that the N protein contains two structural domains—the N-terminal domain (NTD; residues 45 to 181) and the C-terminal dimerization domain (CTD; residues 248 to 365)—flanked by long stretches of disordered regions accounting for almost half of the entire sequence. Small-angle X-ray scattering data show that the protein is in an extended conformation and that the two structural domains of the SARS-CoV N protein are far apart. Both the NTD and the CTD have been shown to bind RNA. Here we show that all disordered regions are also capable of binding to RNA. Constructs containing multiple RNA-binding regions showed Hill coefficients greater than 1, suggesting that the N protein binds to RNA cooperatively. The effect can be explained by the “coupled-allostery” model, devised to explain the allosteric effect in a multidomain regulatory system. Although the N proteins of different coronaviruses share very low sequence homology, the physicochemical features described above may be conserved across different groups of Coronaviridae. The current results underscore the important roles of multisite nucleic acid binding and intrinsic disorder in N protein function and RNP packaging.


2002 ◽  
Vol 76 (3) ◽  
pp. 1521-1526 ◽  
Author(s):  
M. H. Verheije ◽  
R. C. L. Olsthoorn ◽  
M. V. Kroese ◽  
P. J. M. Rottier ◽  
J. J. M. Meulenberg

ABSTRACT We used an infectious cDNA clone of Porcine reproductive and respiratory syndrome virus (PRRSV) to investigate the presence of essential replication elements in the region of the genome encoding the structural proteins. Deletion analysis showed that a stretch of 34 nucleotides (14653 to 14686) within ORF7, which encodes the nucleocapsid protein, is essential for RNA replication. Strand-specific reverse transcription-PCR analysis of viral RNA isolated from transfected BHK-21 cells revealed that this region is required for negative-strand genomic RNA synthesis. The 34-nucleotide stretch is highly conserved among PRRSV isolates and folds into a putative hairpin. A 7-base sequence within the loop of this structure was suggested to base-pair with a sequence present in the loop of a hairpin located in the 3′ noncoding region, resulting in a kissing interaction. Mutational analyses confirmed that this kissing interaction is required for RNA replication.


Author(s):  
Dimitrij Lang

The success of the protein monolayer technique for electron microscopy of individual DNA molecules is based on the prevention of aggregation and orientation of the molecules during drying on specimen grids. DNA adsorbs first to a surface-denatured, insoluble cytochrome c monolayer which is then transferred to grids, without major distortion, by touching. Fig. 1 shows three basic procedures which, modified or not, permit the study of various important properties of nucleic acids, either in concert with other methods or exclusively:1) Molecular weights relative to DNA standards as well as number distributions of molecular weights can be obtained from contour length measurements with a sample standard deviation between 1 and 4%.


Sign in / Sign up

Export Citation Format

Share Document