scholarly journals Uncoupling of Chromatin Assembly from DNA Replication in Sciara Reveals a Domain of Postreplicative Immature Chromatin

2021 ◽  
Author(s):  
Fyodor D. Urnov ◽  
Ulrich Scheer ◽  
Hanswalter Zentgraf ◽  
Heidi S. Smith ◽  
Susan A. Gerbi

DNA replication in dividing eukaryotic cells imposes a requirement for the faithful recreation on the newly synthesized chromatids of the nucleoprotein architecture of parent chromosomes. Practically nothing is known about the structure of postreplicative immature chromatin (a very short-lived entity of <30 min.). We report here the unexpected discovery that during DNA amplification of locus II/9A in salivary gland polytene chromosomes of the fungus fly Sciara coprophila, DNA replication fork passage is uncoupled from postreplicative chromatin assembly; this enables visualization and analysis of chromatin fibers disassembled by DNA replication. We used electron microscopy to visualize a wealth of low nucleosome density immature chromatin fibers in preparations of Sciara chromatin from amplification-stage tissue. Remarkably, as gauged by high sensitivity to micrococcal nuclease and an unusually short length of DNA associated with each histone octamer, we found that locus II/9A which undergoes amplification and is replicated once every 4-6 hrs. (but not the bulk genome or a replicatively quiescent DNA stretch) was maintained in such an ummature fiber for ca. 24 hrs. Following amplification, locus II/9A assumed conventional chromatin organization, indicating that the epigenetic mark targeting nascent DNA to the chromatin assembly machinery is stable for several hours. We propose that this very unusual prolonged maintenance of a segment of the genome in immature chromatin facilitates access by the basal transcriptional machinery to the amplified DNA, and thus is an evolutionary adaptation to the demand for high transcription from genes that reside in the amplified loci.

1989 ◽  
Vol 93 (4) ◽  
pp. 593-603
Author(s):  
A.T. Annunziato

Specific inhibitors of eukaryotic DNA topoisomerases I and II (camptothecin and VM-26, respectively) were used to examine the involvement of topoisomerases in DNA replication and chromatin assembly in vivo. When used singly, either camptothecin or VM-26 inhibited DNA synthesis in HeLa cells by more than 80%; when used simultaneously, the inhibitors effectively stopped replication, demonstrating that at least one class of topoisomerase must be active for fork propagation in vivo. To study nucleosome assembly during topoisomerase inhibition, three experimental strategies were employed: (1) pulse-chase experiments; (2) analyses of chromatin synthesized during residual replication in the presence of either camptothecin or VM-26; and (3) the assembly of previously replicated, unassembled DNA, generated in the presence of protein synthesis inhibitors. Using sensitivity to micrococcal nuclease and the maturation of non-nucleosomal replication intermediates as criteria, neither camptothecin nor VM-26, alone or in concert, inhibited nucleosome assembly under any experimental protocol tested. These data provide evidence that, although topoisomerase activity is essential for DNA replication, neither continuous fork propagation nor topoisomerase activity is required for chromatin assembly on new DNA.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 127-134 ◽  
Author(s):  
S. Varmuza ◽  
V. Prideaux ◽  
R. Kothary ◽  
J. Rossant

Mouse trophoblast giant cells undergo successive rounds of DNA replication resulting in amplification of the genome. It has been difficult to determine whether giant cell chromosomes are polyploid as in liver cells or polytene as in Dipteran salivary glands because the chromosomes do not condense. We have examined the pattern of hybridization of mouse giant cells with a variety of in situ chromosome markers to address this question. Hemizygous markers displayed one hybridization signal per nucleus in both diploid and giant cells, while homozygous markers displayed two signals per nucleus in both cell types. These patterns are consistent with cytological evidence indicating that giant cell chromosomes are polytene rather than polyploid. However, in contrast to the situation in Dipteran salivary glands, the two homologues do not appear to be closely associated. We conclude that the mechanism of giant cell DNA amplification involves multiple rounds of DNA replication in the absence of both karyokinesis and cytokinesis, and that sister chromatids, but not homologous chromosomes, remain closely associated during this process.


2007 ◽  
Vol 18 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Yasunari Takami ◽  
Tatsuya Ono ◽  
Tatsuo Fukagawa ◽  
Kei-ichi Shibahara ◽  
Tatsuo Nakayama

Chromatin assembly factor-1 (CAF-1), a complex consisting of p150, p60, and p48 subunits, is highly conserved from yeast to humans and facilitates nucleosome assembly of newly replicated DNA in vitro. To investigate roles of CAF-1 in vertebrates, we generated two conditional DT40 mutants, respectively, devoid of CAF-1p150 and p60. Depletion of each of these CAF-1 subunits led to delayed S-phase progression concomitant with slow DNA synthesis, followed by accumulation in late S/G2 phase and aberrant mitosis associated with extra centrosomes, and then the final consequence was cell death. We demonstrated that CAF-1 is necessary for rapid nucleosome formation during DNA replication in vivo as well as in vitro. Loss of CAF-1 was not associated with the apparent induction of phosphorylations of S-checkpoint kinases Chk1 and Chk2. To elucidate the precise role of domain(s) in CAF-1p150, functional dissection analyses including rescue assays were preformed. Results showed that the binding abilities of CAF-1p150 with CAF-1p60 and DNA polymerase sliding clamp proliferating cell nuclear antigen (PCNA) but not with heterochromatin protein HP1-γ are required for cell viability. These observations highlighted the essential role of CAF-1–dependent nucleosome assembly in DNA replication and cell proliferation through its interaction with PCNA.


2021 ◽  
Author(s):  
Rachel A. Hoffman ◽  
David M. MacAlpine

Prior to initiation of DNA replication, the eukaryotic helicase, Mcm2-7, must be activated to unwind DNA at replication start sites in early S-phase. To study helicase activation within origin chromatin, we constructed a conditional mutant of the polymerase α subunit Cdc17 (or Pol1) to prevent priming and block replication. Recovery of these cells at permissive conditions resulted in the generation of unreplicated gaps at origins, likely due to helicase activation prior to replication initiation. We used micrococcal nuclease (MNase)-based chromatin occupancy profiling under restrictive conditions to study chromatin dynamics associated with helicase activation. Helicase activation in the absence of DNA replication resulted in the disruption and disorganization of chromatin which extends up to one kilobase from early, efficient replication origins. The CMG holo-helicase complex also moves the same distance out from the origin, producing single-stranded DNA that activates the intra-S-phase checkpoint. Loss of the checkpoint did not regulate the progression and stalling of the CMG complex, but rather resulted in the disruption of chromatin at both early and late origins. Finally, we found that the local sequence context regulates helicase progression in the absence of DNA replication, suggesting that the helicase is intrinsically less processive when uncoupled from replication.


2001 ◽  
Vol 21 (19) ◽  
pp. 6574-6584 ◽  
Author(s):  
Jessica K. Tyler ◽  
Kimberly A. Collins ◽  
Jayashree Prasad-Sinha ◽  
Elizabeth Amiott ◽  
Michael Bulger ◽  
...  

ABSTRACT The assembly of newly synthesized DNA into chromatin is essential for normal growth, development, and differentiation. To gain a better understanding of the assembly of chromatin during DNA synthesis, we identified, cloned, and characterized the 180- and 105-kDa polypeptides of Drosophila chromatin assembly factor 1 (dCAF-1). The purified recombinant p180+p105+p55 dCAF-1 complex is active for DNA replication-coupled chromatin assembly. Furthermore, we have established that the putative 75-kDa polypeptide of dCAF-1 is a C-terminally truncated form of p105 that does not coexist in dCAF-1 complexes containing the p105 subunit. The analysis of native and recombinant dCAF-1 revealed an interaction between dCAF-1 and theDrosophila anti-silencing function 1 (dASF1) component of replication-coupling assembly factor (RCAF). The binding of dASF1 to dCAF-1 is mediated through the p105 subunit of dCAF-1. Consistent with the interaction between dCAF-1 p105 and dASF1 in vitro, we observed that dASF1 and dCAF-1 p105 colocalized in vivo inDrosophila polytene chromosomes. This interaction between dCAF-1 and dASF1 may be a key component of the functional synergy observed between RCAF and dCAF-1 during the assembly of newly synthesized DNA into chromatin.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1051-1058 ◽  
Author(s):  
S. Hayashi

DNA replication in G2 does not normally occur due to the checkpoint control. To elucidate its mechanism, the functions of the escargot and Dmcdc2 genes of Drosophila were studied. When escargot function was eliminated, diploid imaginal cells that were arrested in G2 lost Cyclin A, a regulatory subunit of G2/M cdk, and entered an endocycle. escargot genetically interacted with Dmcdc2 which encodes a catalytic subunit of G2/M cdk. The mutant phenotypes of Dmcdc2 itself was similar to those of escargot: many diploid cells in imaginal discs, salivary glands and the central nervous system entered an endocycle and sometimes formed polytene chromosomes. Since mitotically quiescent abdominal histoblasts still required Dmcdc2 to remain diploid, the inhibitory activity of G2/M cdk on DNA replication appeared to be separable from its activity as the mitosis promoting factor. These results suggest that in G2, escargot is required to maintain a high level of G2/M cdk that actively inhibits the entry into S phase.


Sign in / Sign up

Export Citation Format

Share Document