scholarly journals Rotational remapping between differently prioritized representations in visual working memory

2021 ◽  
Author(s):  
Quan Wan ◽  
Jorge A. Menendez ◽  
Bradley R. Postle

How does the brain prioritize among the contents of working memory to appropriately guide behavior? Using inverted encoding modeling (IEM), previous work (Wan et al., 2020) showed that unprioritized memory items (UMI) are actively represented in the brain but in a “flipped”, or opposite, format compared to prioritized memory items (PMI). To gain insight into the mechanisms underlying the UMI-to-PMI representational transformation, we trained recurrent neural networks (RNNs) with an LSTM architecture to perform a 2-back working memory task. Visualization of the LSTM hidden layer activity using Principle Component Analysis (PCA) revealed that the UMI representation is rotationally remapped to that of PMI, and this was quantified and confirmed via demixed PCA. The application of the same analyses to the EEG dataset of Wan et al. (2020) revealed similar rotational remapping between the UMI and PMI representations. These results identify rotational remapping as a candidate neural computation employed in the dynamic prioritization within contents of working memory.

2021 ◽  
Author(s):  
Daniel B. Ehrlich ◽  
John D. Murray

Real-world tasks require coordination of working memory, decision making, and planning, yet these cognitive functions have disproportionately been studied as independent modular processes in the brain. Here we propose that contingency representations, defined as mappings for how future behaviors depend on upcoming events, can unify working memory and planning computations. We designed a task capable of disambiguating distinct types of representations. Our experiments revealed that human behavior is consistent with contingency representations, and not with traditional sensory models of working memory. In task-optimized recurrent neural networks we investigated possible circuit mechanisms for contingency representations and found that these representations can explain neurophysiological observations from prefrontal cortex during working memory tasks. Finally, we generated falsifiable predictions for neural data to identify contingency representations in neural data and to dissociate different models of working memory. Our findings characterize a neural representational strategy that can unify working memory, planning, and context-dependent decision making.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2416 ◽  
Author(s):  
András Szilágyi ◽  
István Zachar ◽  
Anna Fedor ◽  
Harold P. de Vladar ◽  
Eörs Szathmáry

Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain – recurrent neural networks (acting as attractors), the action selection loop and implicit working memory – to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.


2022 ◽  
Author(s):  
Leo Kozachkov ◽  
John Tauber ◽  
Mikael Lundqvist ◽  
Scott L Brincat ◽  
Jean-Jacques Slotine ◽  
...  

Working memory has long been thought to arise from sustained spiking/attractor dynamics. However, recent work has suggested that short-term synaptic plasticity (STSP) may help maintain attractor states over gaps in time with little or no spiking. To determine if STSP endows additional functional advantages, we trained artificial recurrent neural networks (RNNs) with and without STSP to perform an object working memory task. We found that RNNs with and without STSP were both able to maintain memories over distractors presented in the middle of the memory delay. However, RNNs with STSP showed activity that was similar to that seen in the cortex of monkeys performing the same task. By contrast, RNNs without STSP showed activity that was less brain-like. Further, RNNs with STSP were more robust to noise and network degradation than RNNs without STSP. These results show that STSP can not only help maintain working memories, it also makes neural networks more robust.


F1000Research ◽  
2017 ◽  
Vol 5 ◽  
pp. 2416
Author(s):  
András Szilágyi ◽  
István Zachar ◽  
Anna Fedor ◽  
Harold P. de Vladar ◽  
Eörs Szathmáry

Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain – recurrent neural networks (acting as attractors), the action selection loop and implicit working memory – to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.


Author(s):  
Selma Lugtmeijer ◽  
◽  
Linda Geerligs ◽  
Frank Erik de Leeuw ◽  
Edward H. F. de Haan ◽  
...  

AbstractWorking memory and episodic memory are two different processes, although the nature of their interrelationship is debated. As these processes are predominantly studied in isolation, it is unclear whether they crucially rely on different neural substrates. To obtain more insight in this, 81 adults with sub-acute ischemic stroke and 29 elderly controls were assessed on a visual working memory task, followed by a surprise subsequent memory test for the same stimuli. Multivariate, atlas- and track-based lesion-symptom mapping (LSM) analyses were performed to identify anatomical correlates of visual memory. Behavioral results gave moderate evidence for independence between discriminability in working memory and subsequent memory, and strong evidence for a correlation in response bias on the two tasks in stroke patients. LSM analyses suggested there might be independent regions associated with working memory and episodic memory. Lesions in the right arcuate fasciculus were more strongly associated with discriminability in working memory than in subsequent memory, while lesions in the frontal operculum in the right hemisphere were more strongly associated with criterion setting in subsequent memory. These findings support the view that some processes involved in working memory and episodic memory rely on separate mechanisms, while acknowledging that there might also be shared processes.


2006 ◽  
Vol 6 ◽  
pp. 992-997 ◽  
Author(s):  
Alison M. Kerr

More than 20 years of clinical and research experience with affected people in the British Isles has provided insight into particular challenges for therapists, educators, or parents wishing to facilitate learning and to support the development of skills in people with Rett syndrome. This paper considers the challenges in two groups: those due to constraints imposed by the disabilities associated with the disorder and those stemming from the opportunities, often masked by the disorder, allowing the development of skills that depend on less-affected areas of the brain. Because the disorder interferes with the synaptic links between neurones, the functions of the brain that are most dependent on complex neural networks are the most profoundly affected. These functions include speech, memory, learning, generation of ideas, and the planning of fine movements, especially those of the hands. In contrast, spontaneous emotional and hormonal responses appear relatively intact. Whereas failure to appreciate the physical limitations of the disease leads to frustration for therapist and client alike, a clear understanding of the better-preserved areas of competence offers avenues for real progress in learning, the building of satisfying relationships, and achievement of a quality of life.


2019 ◽  
Vol 10 (4) ◽  
pp. 204380871987614
Author(s):  
Nisha Yao ◽  
Marcus A. Rodriguez ◽  
Mengyao He ◽  
Mingyi Qian

Experimental studies have yielded discrepant results regarding the relationship between anxiety and attention bias to threat. Cognitive factors modulating the presence of threat-related attention bias in anxiety have drawn growing attention. Previous research demonstrated that visual working memory (WM) representations can guide attention allocation in a top-down manner. Whether threat-related WM representations affected the presence of attention bias in anxiety awaits examination. Combining a memory task and a dot-probe task, this study investigated how WM representations of faces with neutral or negative expressions modulated the attention bias to threat among highly anxious individuals versus controls. Results showed that highly anxious individuals developed more pronounced attention bias to threat when maintaining WM representations of negative faces as compared to the control group. There were no significant between-group effects when the WM representations were neutral. These results suggested that highly anxious individuals were more susceptible to the influence of mental representations with negative valence on attention deployment.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 98-98
Author(s):  
Corinne Cannavale ◽  
Caitlyn Edwards ◽  
Ruyu Liu ◽  
Samantha Iwinski ◽  
Anne Walk ◽  
...  

Abstract Objectives Carotenoids are plant pigments known to deposit in neural tissues including the hippocampus, a brain substrate that supports several memory forms. However, there is a dearth of knowledge regarding carotenoid status and working memory function in children. Accordingly, this study aimed to understand the relationship between macular and skin carotenoids to visual and auditory working memory (WM) function. Methods Seventy preadolescent children (7–12 years, 32 males) were recruited from the East-Central Illinois area. Auditory working memory was assessed using the story recall subtest of the Woodcock-Johnson IV Test of Cognitive Abilities. A subsample (N = 61, 27 males) completed a visual working memory task and reaction time was quantified to determine speed of memory processing at set sizes of 1 to 4 items. Macular pigment optical density (MPOD) was assessed using customized heterochromatic flicker photometry. Skin carotenoids were assessed using reflection spectroscopy (Veggie Meter). Hierarchical linear regressions were conducted to assess the relationship between carotenoid status and WM function, while controlling for age, sex, income, and whole-body % fat (DXA). Results Auditory WM was positively associated with skin carotenoids (b = 0.263, P = 0.039) but not MPOD (b = −0.044, P = 0.380). In contrast, MPOD was significantly associated with faster visual WM speed at set size 3 (b = −0.253, P = 0.039) and trending at set sizes of 1 (b = −0.225, P = 0.051), 2 (b = −0.171, P = 0.121), and 4 (b = −0.230, P = 0.055). Interestingly, skin carotenoids were not related to visual WM performance at either set size (all P’s > 0.300). Conclusions These results indicate that auditory and visual WM may be differentially related to carotenoids. While skin carotenoids encompass all carotenoids consumed in diet, lutein and zeaxanthin are the only carotenoids which deposit in the macula. Given that MPOD was only related to visual WM, this suggests lutein plays a larger role in these neural functions relative to auditory WM. Interestingly, MPOD's relationship with visual WM increased in strength with the more difficult trial type (i.e., increasing set size), indicating MPOD is related at higher levels of WM capacity. Funding Sources This study was funded by the Egg Nutrition Center.


2020 ◽  
Vol 7 (8) ◽  
pp. 190228 ◽  
Author(s):  
Quan Wan ◽  
Ying Cai ◽  
Jason Samaha ◽  
Bradley R. Postle

How does the neural representation of visual working memory content vary with behavioural priority? To address this, we recorded electroencephalography (EEG) while subjects performed a continuous-performance 2-back working memory task with oriented-grating stimuli. We tracked the transition of the neural representation of an item ( n ) from its initial encoding, to the status of ‘unprioritized memory item' (UMI), and back to ‘prioritized memory item', with multivariate inverted encoding modelling. Results showed that the representational format was remapped from its initially encoded format into a distinctive ‘opposite' representational format when it became a UMI and then mapped back into its initial format when subsequently prioritized in anticipation of its comparison with item n + 2. Thus, contrary to the default assumption that the activity representing an item in working memory might simply get weaker when it is deprioritized, it may be that a process of priority-based remapping helps to protect remembered information when it is not in the focus of attention.


Sign in / Sign up

Export Citation Format

Share Document