scholarly journals Influenza A virus defective viral genomes are inefficiently packaged into virions relative to wild-type genomic RNAs

2021 ◽  
Author(s):  
Fadi G Alnaji ◽  
William K Reiser ◽  
Aartjan te Velthuis ◽  
Christopher B Brooke

Deletion-containing viral genomes (DelVGs) are commonly produced during influenza A virus infection and have been implicated in influencing clinical infection outcomes. Despite their ubiquity, the specific molecular mechanisms that govern DelVG formation and their packaging into defective interfering particles (DIPs) remain poorly understood. Here, we utilized next-generation sequencing to analyze DelVGs that form de novo early during infection, prior to packaging. Analysis of these early DelVGs revealed that deletion formation occurs in clearly defined hotspots and is significantly associated with both direct sequence repeats and enrichment of adenosine and uridine bases. By comparing intracellular DelVGs with those packaged into extracellular virions, we discovered that DelVGs face a significant bottleneck during genome packaging relative to wild type genomic RNAs. Surprisingly, packaged DelVGs exhibited no signs of enrichment for specific deletion characteristics suggesting that all DelVGs are equally limited in packaging efficiency. Our data provide the first unbiased, high-resolution portrait of the diversity of DelVGs that are generated by the IAV replication machinery and shed light on the mechanisms that underly DelVG formation.

mBio ◽  
2021 ◽  
Author(s):  
Fadi G. Alnaji ◽  
William K. Reiser ◽  
Joel Rivera-Cardona ◽  
Aartjan J. W. te Velthuis ◽  
Christopher B. Brooke

Defective interfering particles (DIPs) are commonly produced by RNA viruses and have been implicated in modulating clinical infection outcomes; hence, there is increasing interest in the potential of DIPs as antiviral therapeutics. For influenza viruses, DIPs are formed by the packaging of genomic RNAs harboring internal deletions.


2009 ◽  
Vol 90 (7) ◽  
pp. 1734-1740 ◽  
Author(s):  
Ken Fujii ◽  
Makoto Ozawa ◽  
Kiyoko Iwatsuki-Horimoto ◽  
Taisuke Horimoto ◽  
Yoshihiro Kawaoka

The efficient incorporation of influenza virus genome segments into virions is mediated by cis-acting regions at both ends of the viral RNAs. It was shown previously that nt 16–26 at the 3′ end of the non-structural (NS) viral RNA of influenza A virus are important for efficient virion incorporation and that nt 27–56 also contribute to this process. To understand further the signalling requirements for genome packaging, this study performed linker-scanning mutagenesis in the latter region and found that nt 27–35 made an appreciable contribution to the efficient incorporation of the NS segment. An NS vRNA library was then generated composed of an RNA population with randomized nucleotides at positions 16–35 such that the virus could select the sequences it required for virion incorporation. The sequences selected differed from the wild-type sequence and no conserved nucleotides were selected. The ability of non-wild-type sequences to function in this manner indicates that the incorporation of influenza A virus genome segments does not absolutely require specific sequences.


2008 ◽  
Vol 82 (23) ◽  
pp. 11869-11879 ◽  
Author(s):  
Edward C. Hutchinson ◽  
Martin D. Curran ◽  
Eliot K. Read ◽  
Julia R. Gog ◽  
Paul Digard

ABSTRACT The genomic viral RNA (vRNA) segments of influenza A virus contain specific packaging signals at their termini that overlap the coding regions. To further characterize cis-acting signals in segment 7, we introduced synonymous mutations into the terminal coding regions. Mutation of codons that are normally highly conserved reduced virus growth in embryonated eggs and MDCK cells between 10- and 1,000-fold compared to that of the wild-type virus, whereas similar alterations to nonconserved codons had little effect. In all cases, the growth-impaired viruses showed defects in virion assembly and genome packaging. In eggs, nearly normal numbers of virus particles that in aggregate contained apparently equimolar quantities of the eight segments were formed, but with about fourfold less overall vRNA content than wild-type virions, suggesting that, on average, fewer than eight segments per particle were packaged. Concomitantly, the particle/PFU and segment/PFU ratios of the mutant viruses showed relative increases of up to 300-fold, with the behavior of the most defective viruses approaching that predicted for random segment packaging. Fluorescent staining of infected cells for the nucleoprotein and specific vRNAs confirmed that most mutant virus particles did not contain a full genome complement. The specific infectivity of the mutant viruses produced by MDCK cells was also reduced, but in this system, the mutations also dramatically reduced virion production. Overall, we conclude that segment 7 plays a key role in the influenza A virus genome packaging process, since mutation of as few as 4 nucleotides can dramatically inhibit infectious virus production through disruption of vRNA packaging.


2021 ◽  
Author(s):  
Lars Pelz ◽  
Daniel Rüdiger ◽  
Tanya Dogra ◽  
Fadi G. Alnaji ◽  
Yvonne Genzel ◽  
...  

Defective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that comprise an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon co-infection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease. To select corresponding candidates, we studied de novo generation of DIPs and propagation competition between different defective interfering (DI) vRNAs in a STV co-infection scenario in cell culture. A small-scale two-stage cultivation system that allows long-term semi-continuous propagation of IAV and its DIPs was used. Strong periodic oscillations in virus titers were observed due to the dynamic interaction of DIPs and STVs. Using next-generation sequencing, we detected a predominant formation and accumulation of DI vRNAs on the polymerase-encoding segments. Short DI vRNAs accumulated to higher fractions than longer ones, indicating a replication advantage. Yet, an optimum fragment length was observed. Some DI vRNAs showed breaking points in a specific part of their bundling signal (belonging to the packaging signal), suggesting its dispensability for DI vRNA propagation. Over a total cultivation time of 21 days, several individual DI vRNAs accumulated to high fractions, while others decreased. Using reverse genetics for IAV, purely clonal DIPs derived from highly replicating DI vRNAs were generated. We confirm that these DIPs exhibit a superior in vitro interfering efficacy than DIPs derived from lowly accumulated DI vRNAs and suggest promising candidates for efficacious antiviral treatment. Importance Defective interfering particles (DIPs) emerge naturally during viral infection and typically show an internal deletion in the viral genome. Thus, DIPs are propagation-incompetent. Previous research suggests DIPs as potent antiviral compounds for many different virus families due to their ability to interfere with virus replication by competitive inhibition. For instance, the administration of influenza A virus (IAV) DIPs resulted in a rescue of mice from an otherwise lethal IAV dose. Moreover, no apparent toxic effects were observed when only DIPs were administered to mice and ferrets. IAV DIPs show antiviral activity against many different IAV strains, including pandemic and highly pathogenic avian strains, and even against non-homologous viruses, like SARS-CoV-2, by stimulation of innate immunity. Here, we used a cultivation/infection system, which exerted selection pressure toward accumulation of highly competitive IAV DIPs. These DIPs showed a superior interfering efficacy in vitro , and we suggest them for effective antiviral therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Najat Bdeir ◽  
Prerna Arora ◽  
Sabine Gärtner ◽  
Stefan Pöhlmann ◽  
Michael Winkler

AbstractInfluenza A virus (IAV) infection constitutes a significant health threat. Defective interfering particles (DIPs) can arise during IAV infection and inhibit spread of wild type (WT) IAV. DIPs harbor defective RNA segments, termed DI RNAs, that usually contain internal deletions and interfere with replication of WT viral RNA segments. Here, we asked whether DIPs harboring two instead of one DI RNA exert increased antiviral activity. For this, we focused on DI RNAs derived from segments 1 and 3, which encode the polymerase subunits PB2 and PA, respectively. We demonstrate the successful production of DIPs harboring deletions in segments 1 and/or 3, using cell lines that co-express PB2 and PA. Further, we demonstrate that DIPs harboring two instead of one DI RNA do not exhibit increased ability to inhibit replication of a WT RNA segment. Similarly, the presence of two DI RNAs did not augment the induction of the interferon-stimulated gene MxA and the inhibition of IAV infection. Collectively, our findings suggest that the presence of multiple DI RNAs derived from genomic segments encoding polymerase subunits might not result in increased antiviral activity.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Huan Chen ◽  
Yingjuan Qian ◽  
Xin Chen ◽  
Zhiyang Ruan ◽  
Yuetian Ye ◽  
...  

ABSTRACT The life cycle of influenza A virus (IAV) is modulated by various cellular host factors. Although previous studies indicated that IAV infection is controlled by HDAC6, the deacetylase involved in the regulation of PA remained unknown. Here, we demonstrate that HDAC6 acts as a negative regulator of IAV infection by destabilizing PA. HDAC6 binds to and deacetylates PA, thereby promoting the proteasomal degradation of PA. Based on mass spectrometric analysis, Lys(664) of PA can be deacetylated by HDAC6, and the residue is crucial for PA protein stability. The deacetylase activity of HDAC6 is required for anti-IAV activity, because IAV infection was enhanced due to elevated IAV RNA polymerase activity upon HDAC6 depletion and an HDAC6 deacetylase dead mutant (HDAC6-DM; H216A, H611A). Finally, we also demonstrate that overexpression of HDAC6 suppresses IAV RNA polymerase activity, but HDAC6-DM does not. Taken together, our findings provide initial evidence that HDAC6 plays a negative role in IAV RNA polymerase activity by deacetylating PA and thus restricts IAV RNA transcription and replication. IMPORTANCE Influenza A virus (IAV) continues to threaten global public health due to drug resistance and the emergence of frequently mutated strains. Thus, it is critical to find new strategies to control IAV infection. Here, we discover one host protein, HDAC6, that can inhibit viral RNA polymerase activity by deacetylating PA and thus suppresses virus RNA replication and transcription. Previously, it was reported that IAV can utilize the HDAC6-dependent aggresome formation mechanism to promote virus uncoating, but HDAC6-mediated deacetylation of α-tubulin inhibits viral protein trafficking at late stages of the virus life cycle. These findings together will contribute to a better understanding of the role of HDAC6 in regulating IAV infection. Understanding the molecular mechanisms of HDAC6 at various periods of viral infection may illuminate novel strategies for developing antiviral drugs.


2014 ◽  
Vol 57 (13) ◽  
pp. 5738-5747 ◽  
Author(s):  
Matias Rey-Carrizo ◽  
Marta Barniol-Xicota ◽  
Chunlong Ma ◽  
Marta Frigolé-Vivas ◽  
Eva Torres ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Rui Gui ◽  
Quanjiao Chen

Viral infection usually leads to cell death. Moderate cell death is a protective innate immune response. By contrast, excessive, uncontrolled cell death causes tissue destruction, cytokine storm, or even host death. Thus, the struggle between the host and virus determines whether the host survives. Influenza A virus (IAV) infection in humans can lead to unbridled hyper-inflammatory reactions and cause serious illnesses and even death. A full understanding of the molecular mechanisms and regulatory networks through which IAVs induce cell death could facilitate the development of more effective antiviral treatments. In this review, we discuss current progress in research on cell death induced by IAV infection and evaluate the role of cell death in IAV replication and disease prognosis.


2019 ◽  
Author(s):  
Michael A. Martin ◽  
Drishti Kaul ◽  
Gene S. Tan ◽  
Christopher W. Woods ◽  
Katia Koelle

AbstractThe rapid evolution of influenza is an important contributing factor to its high worldwide incidence. The emergence and spread of genetic point mutations has been thoroughly studied both within populations and within individual hosts. In addition, influenza viruses are also known to generate genomic variation during their replication in the form of defective viral genomes (DVGs). These DVGs are formed by internal deletions in at least one gene segment that render them incapable of replication without the presence of wild-type virus. DVGs have previously been identified in natural human infections and may be associated with less severe clinical outcomes. These studies have not been able to address how DVG populations evolve in vivo in individual infections due to their cross-sectional design. Here we present an analysis of DVGs present in samples from two longitudinal influenza A H3N2 human challenge studies. We observe the generation of DVGs in almost all subjects. Although the genetic composition of DVG populations was highly variable, identical DVGs were observed both between multiple samples within single hosts as well as between hosts. Most likely due to stochastic effects, we did not observe clear instances of selection for specific DVGs or for shorter DVGs over the course of infection. Furthermore, DVG presence was not found to be associated with peak viral titer or peak symptom scores. Our analyses highlight the diversity of DVG populations within a host over the course of infection and the apparent role that genetic drift plays in their population dynamics.ImportanceThe evolution of influenza virus, in terms of single nucleotide variants and the reassortment of gene segments, has been studied in detail. However, influenza is known to generate defective viral genomes (DVGs) during replication, and little is known about how these genomes evolve both within hosts and at the population level. Studies in animal models have indicated that prophylactically or therapeutically administered DVGs can impact patterns of disease progression. However, the formation of naturally-occurring DVGs, their evolutionary dynamics, and their contribution to disease severity in human hosts is not well understood. Here, we identify the formation of de novo DVGs in samples from human challenge studies throughout the course of infection. We analyze their evolutionary trajectories, revealing the important role of genetic drift in shaping DVG populations during acute infections with well-adapted viral strains.


2019 ◽  
Vol 116 (23) ◽  
pp. 11396-11401 ◽  
Author(s):  
Jessica C. de Greef ◽  
Bram Slütter ◽  
Mary E. Anderson ◽  
Rebecca Hamlyn ◽  
Raul O’Campo Landa ◽  
...  

α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown. Here, we show that mice lacking α-DGN exhibit significantly higher viral titers in the lungs after Influenza A virus (IAV) infection (strain A/Puerto Rico/8/1934 H1N1), suggesting an inability to control virus load. Consistent with this, overexpression of α-DGN before infection or intranasal treatment with recombinant α-DGN prior and during infection, significantly reduced IAV titers in the lungs of wild-type mice. Hemagglutination inhibition assays using recombinant α-DGN showed in vitro neutralization of IAV. Collectively, our results support a protective role for α-DGN in IAV proliferation.


Sign in / Sign up

Export Citation Format

Share Document