scholarly journals ROS-Degradable Polythioketal Urethane Foam Dressings to Promote Porcine Skin Wound Repair

2021 ◽  
Author(s):  
Prarthana Patil ◽  
Katherine A Russo ◽  
Joshua T McCune ◽  
Alonda C Pollins ◽  
Matthew A Cottom ◽  
...  

Impaired skin healing and progression into chronic wounds is a prevalent and growing medical problem. Porous, resorbable biomaterials can be used as temporary substrates placed into skin defects to support cell infiltration, neo-tissue formation, and remodeling of nonhealing wounds. Naturally-derived biomaterials have promising healing benefits, but their low mechanical properties and exuberant costs limit their performance and use. Synthetic materials can be affordably manufactured and tuned across a broader range of physiochemical properties, but opportunities remain for tailoring them for ideal host immune and regenerative responses. Polyesters are the most clinically-tested class of synthetic biomaterials, but their hydrolysis releases acidic degradation products that can cause autocatalytic degradation processes that are poorly controlled and are not tied to cellular or other biologic activities. Here, we systemically explored a series of ROS-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity as an alternative class of synthetic biomaterials for wound healing. It was found that the most hydrophilic PTK-UR variant, which had 7 ethylene glycol (EG7) repeats flanking each side of each thioketal bond, had the highest ROS reactivity of the PTK-URs tested. In an in vivo porcine excisional skin wound healing model, hydrophilic EG7 PTK-UR foams more effectively promoted tissue integration, ECM deposition, and re-epithelialization of full-thickness skin wound compared to more hydrophobic PTK-UR variants. Resolution of type 1 inflammation and lower foreign body response to scaffold remnants was also observed for EG7 versus more hydrophobic PTK-UR scaffolds. Finally, porcine wound healing studies showed that EG7 PTK-UR foams had similar wound healing response to a collagen-based clinical gold standard product, Integra Bilayer Wound Matrix (BWM), while outperforming polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM) with respect to increased ECM production, vascularization, and biomaterial-associated immune phenotype. In sum, PTK-UR foams warrant further development toward a new class of synthetic biomaterial foams for skin wound healing applications.

2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Kareem Abdelsaid ◽  
Sudhahar Varadarajan ◽  
Archita Das ◽  
Yutao Liu ◽  
Xuexiu Fang ◽  
...  

Background: Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) have detrimental effects. Exercise not only improves endothelial dysfunction and angiogenesis in T2DM but also induces secretion of exosomes into circulation. Extracellular superoxide dismutase (ecSOD) is a major secretory Cu containing antioxidant enzyme that catalyzes dismutation of O 2 •- to H 2 O 2 and its full activity requires Cu transporter ATP7A. We reported that ecSOD-derived H 2 O 2 in endothelial cells (ECs) enhances angiogenesis while impaired ATP7A-ecSOD axis in diabetes induces endothelial dysfunction. Here we examined whether exercise-derived exosomes (Exe-Exo) may have pro-angiogenic effects via regulating ATP7A-ecSOD axis in T2DM. Results: Two weeks of voluntary wheel exercise of control C57Bl6 mice increased plasma exosome levels (6.2-fold) characterized by Nanosight, TEM and exosome markers (CD63, CD81, Tsg101). Treatment of HUVECs with equal number of exosomes revealed that angiogenic responses such as EC migration (1.8-fold) and tube formation (1.7-fold) were significantly enhanced by Exe-Exo compared to sedentary-derived exosomes (Sed-Exo). This was associated with increased ATP7A (2.9-fold) and ecSOD (1.4-fold) expression in Exe-Exo. Sed-Exo from high fat-induced T2DM mice significantly decreased EC migration (40%) and tube formation (10%) as well as ATP7A expression (28%) compared to Sed-Exo from control mice, which were restored by T2DM Exe-Exo, but not by T2DM/ecSOD KO Exe-Exo. Furthermore, exosomes overexpressing ecSOD (ecSOD-Exo) which mimic exercise increased angiogenesis and H2O2 levels in ECs, which were inhibited by overexpression of catalase. In vivo, skin wound healing model showed that direct application of T2DM Sed-Exo delayed while T2DM Exe-Exo enhanced wound healing of control mice. Furthermore, defective wound healing in T2DM mice or ecSOD KO mice were rescued by ecSOD-Exo application. Conclusion: Exercise training improves pro-angiogenic function of circulating exosomes in T2DM via increasing ATP7A-ecSOD axis, which may provide an effective therapy for promoting angiogenesis and wound repair in metabolic and cardiovascular diseases.


2020 ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo.Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography.Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro.Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Author(s):  
Fahim M. Mahmood ◽  
Hayder B. Sahib ◽  
Khalid W. Qassim

Wound healing is a complex physiological and dynamic process required the coordination of numerous cell types and biological processes to regenerate damaged tissue and initiate repair which is dependent on a number of inter-related factors. This study was aimed to demonstrate whether the ?2 receptor has role in wound healing and angiogenesis. A murine wild-type (in vivo), excisional skin wound model was done to demonstrate that activation of ?2AR delay wound repair, twenty-four male albino mice were used to investigate the effect of the drug on experimental wound healing grossly, histo-pathologically and immune-histochemically compared with vehicle-only controls. The results showed that the rate of wound healing was significantly slower in salbutamol group than in control group (P


2018 ◽  
Vol 49 (3) ◽  
pp. 1074-1089 ◽  
Author(s):  
Ying Zhao ◽  
Qiang Wang ◽  
Yuan Jin ◽  
Yadan Li ◽  
Changjun Nie ◽  
...  

Background/Aims: How to aid recovery from severe skin injuries, such as burns, chronic or radiation ulcers, and trauma, is a critical clinical problem. Current treatment methods remain limited, and the discovery of ideal wound-healing therapeutics has been a focus of research. Functional recombinant proteins such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) have been developed for skin repair, however, some disadvantages in their use remain. This study reports the discovery of a novel small peptide targeting fibroblast growth factor receptor 2 IIIc (FGFR2IIIc) as a potential candidate for skin wound healing. Methods: A phage-displayed peptide library was used for biopanning FGFR2IIIc-targeting small peptides. The selected small peptides binding to FGFR2IIIc were qualitatively evaluated by an enzyme-linked immunosorbent assay. Their biological function was detected by a cell proliferation assay. Among them, an optimized small peptide named H1 was selected for further study. The affinity of the H1 peptide and FGFR2IIIc was determined by an isothermal titration calorimetry device. The ability of theH1 peptide to promote skin wound repair was investigated using an endothelial cell tube formation assay and wound healing scratch assay in vitro. Subsequently, the H1 peptide was assessed using a rat skin full-thickness wound model and chorioallantoic membrane (CAM) assays in vivo. To explore its molecular mechanisms, RNA-Seq, quantitative real-time PCR, and western blot assays were performed. Computer molecular simulations were also conducted to analyze the binding model. Results: We identified a novel FGFR2IIIc-targeting small peptide, called H1, with 7 amino acid residues using phage display. H1 had high binding affinity with FGFR2IIIc. The H1 peptide promoted the proliferation and motility of fibroblasts and vascular endothelial cells in vitro. In addition, the H1 peptide enhanced angiogenesis in the chick chorioallantoic membrane and accelerated wound healing in a rat full-thickness wound model in vivo. The H1 peptide activated both the PI3K-AKT and MAPK-ERK1/2 pathways and simultaneously increased the secretion of vascular endothelial growth factor. Computer analysis demonstrated that the model of H1 peptide binding to FGFR2IIIc was similar to that of FGF2 and FGFR2IIIc. Conclusion: The H1 peptide has a high affinity for FGFR2IIIc and shows potential as a wound healing agent. As a substitute for bFGF, it could be developed into a novel therapeutic candidate for skin wound repair in the future.


2015 ◽  
Vol 36 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Bizunesh M. Borena ◽  
Ann Martens ◽  
Sarah Y. Broeckx ◽  
Evelyne Meyer ◽  
Koen Chiers ◽  
...  

Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”). Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Daisuke Ito ◽  
Hiroyasu Ito ◽  
Takayasu Ideta ◽  
Ayumu Kanbe ◽  
Soranobu Ninomiya ◽  
...  

Abstract Background The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo. Methods A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography. Results Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro. Conclusion These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 735 ◽  
Author(s):  
Erika Maria Tottoli ◽  
Rossella Dorati ◽  
Ida Genta ◽  
Enrica Chiesa ◽  
Silvia Pisani ◽  
...  

Skin wound healing shows an extraordinary cellular function mechanism, unique in nature and involving the interaction of several cells, growth factors and cytokines. Physiological wound healing restores tissue integrity, but in many cases the process is limited to wound repair. Ongoing studies aim to obtain more effective wound therapies with the intention of reducing inpatient costs, providing long-term relief and effective scar healing. The main goal of this comprehensive review is to focus on the progress in wound medication and how it has evolved over the years. The main complications related to the healing process and the clinical management of chronic wounds are described in the review. Moreover, advanced treatment strategies for skin regeneration and experimental techniques for cellular engineering and skin tissue engineering are addressed. Emerging skin regeneration techniques involving scaffolds activated with growth factors, bioactive molecules and genetically modified cells are exploited to overcome wound healing technology limitations and to implement personalized therapy design.


2021 ◽  
Vol 5 (4) ◽  
pp. 264-278
Author(s):  
Federica Serra ◽  
◽  
Lisa Aielli ◽  
Erica Costantini ◽  
◽  
...  

<abstract> <p>Wound healing (WH) is a fundamental physiological process to keep the integrity of the skin, therefore impaired and chronic WH is a common and severe medical problem and represent one of the biggest challenges of public health. The resolution of the WH inflammatory phase is characterized by a complex series of events that involves many cellular types, especially neutrophils, macrophages and inflammatory mediators, which are crucial for a correct wound closure. MicroRNAs (miRNAs) play essential roles in wound repair. In fact, miR-142 is linked to inflammation modulating neutrophils' chemotaxis and polarization, while the polarization of M1 toward the M2 phenotype is driven by miR-223 and miR-132 is linked to chemokines and cytokines that activate endothelial cells and attract leukocytes and peripheral cells to the damage site. Thus, understanding the dysregulation of miRNAs in WH will be decisive for the development of new and more effective therapies for the management of chronic wounds.</p> </abstract>


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Sign in / Sign up

Export Citation Format

Share Document