scholarly journals Gaseous Signaling Compounds (Hydrogen Sulfide and Nitric Oxide) and Their Relative Roles in Affecting Anaerobic HeLa 229 Cell Viability

2021 ◽  
Author(s):  
Balbina J. Plotkin ◽  
Ira M. Sigar ◽  
Amber Kaminski

Metabolic pathways supporting long-term anaerobic cell viability have not been identified. The effect NO and H2S pathway effectors have on HeLa 229 cell viability was measured after 10 days anaerobic incubation. The addition of arginine or xanthine (NO pathway precursors) consistently increased HeLa cell viability by 13.1- and 4.4-fold, respectively. Allopurinol, a xanthine oxidase inhibitor, also increased viability, as compared to control levels. In contrast, inhibition of iNOS by 1400W increased cell viability by 79-fold. Regarding the H2S pathway, precursor cysteine enhanced viability by 9.8-fold with the greatest number of viable cells measured in response to the presence of a H2S donor (GYY4137), or an inhibitor of glutathione synthesis, propargylglycine (40- and 85-fold, respectively). These results demonstrate that the constitutive level of cell viability after extended (10 days) growth without oxygen can be modulated by affecting NO or H2S generating pathways.

2018 ◽  
Vol 17 (9) ◽  
pp. 654-670 ◽  
Author(s):  
Mohit Kumar ◽  
Rajat Sandhir

Background & Objective: Hydrogen sulfide [H2S] has been widely known as a toxic gas for more than 300 years in the scientific community. However, the understanding about this small molecule has changed after the discovery of involvement of H2S in physiological and pathological mechanisms in brain. H2S is a third gasotransmitter and neuromodulator after carbon monoxide [CO] and nitric oxide [NO]. H2S plays an important role in memory and cognition by regulating long-term potentiation [LTP] and calcium homeostasis in neuronal cells. The disturbances in endogenous H2S levels and trans-sulfuration pathway have been implicated in neurodegenerative disorders like Alzheimer’s disease, Parkinson disease, stroke and traumatic brain injury. According to the results obtained from various studies, H2S not only behaves as neuromodulator but also is a potent antioxidant, anti-inflammatory and anti-apoptotic molecule suggesting its neuroprotective potential. Conclusion: Recently, there is an increased interest in developing H2S releasing pharmaceuticals to target various neurological disorders. This review covers the information about the involvement of H2S in neurodegenerative diseases, its molecular targets and its role as potential therapeutic molecule.


2006 ◽  
Vol 290 (3) ◽  
pp. F625-F631 ◽  
Author(s):  
Takahiko Nakagawa ◽  
Hanbo Hu ◽  
Sergey Zharikov ◽  
Katherine R. Tuttle ◽  
Robert A. Short ◽  
...  

The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 549-P
Author(s):  
HIROKI MIZUKAMI ◽  
REMINA KOYAMA ◽  
KAZUHISA TAKAHASHI ◽  
SHO OSONOI ◽  
SAORI OGASAWARA ◽  
...  

2019 ◽  
Vol 72 (8) ◽  
pp. 1473-1476
Author(s):  
Nataliya Matolinets ◽  
Helen Sklyarova ◽  
Eugene Sklyarov ◽  
Andrii Netliukh

Introduction: Polytrauma patients have high risk of shock, septic complications and death during few years of follow-up. In recent years a lot of attention is paid to gaseous transmitters, among which are nitrogen oxide (NO) and hydrogen sulfide (H2S). It is known that the rise of NO and its metabolites levels occurs during the acute period of polytrauma. Nitric oxide and hydrogen sulfide are produced in different cell types, among which are lymphocytes. The aim: To investigate the levels of NO, NOS, iNOS, еNOS, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Materials and methods: We investigated the levels of NO, NO-synthase, inducible NO-synthase, endothelial NO-synthase, H2S in lymphocytes lysate in patients at the moment of hospitalization and 24 hours after trauma. Results: The study included 20 patients with polytrauma who were treated in the intensive care unit (ICU) of the Lviv Emergency Hospital. Tissue injury was associated with an increased production of NO, NOS, iNOS, еNOS during the acute period of polytrauma. At the same time, the level of H2S decreased by the end of the first day of traumatic injury. Conclusions: In acute period of polytrauma, significant increasing of iNOS and eNOS occurs with percentage prevalence of iNOS over eNOS on the background of H2S decreasing.


Sign in / Sign up

Export Citation Format

Share Document