A causal role for uric acid in fructose-induced metabolic syndrome

2006 ◽  
Vol 290 (3) ◽  
pp. F625-F631 ◽  
Author(s):  
Takahiko Nakagawa ◽  
Hanbo Hu ◽  
Sergey Zharikov ◽  
Katherine R. Tuttle ◽  
Robert A. Short ◽  
...  

The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.

2008 ◽  
Vol 294 (4) ◽  
pp. F710-F718 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Edilia Tapia ◽  
Pablo Bautista-García ◽  
Virgilia Soto ◽  
Carmen Ávila-Casado ◽  
...  

Increased fructose consumption is associated with hyperuricemia, metabolic syndrome, and renal damage. This study evaluated whether febuxostat (Fx), an investigational nonpurine, and selective xanthine oxidase inhibitor, could alleviate the features of metabolic syndrome as well as the renal hemodynamic alterations and afferent arteriolopathy induced by a high-fructose diet in rats. Two groups of rats were fed a high-fructose diet (60% fructose) for 8 wk, and two groups received a normal diet. For each diet, one group was treated with Fx (5–6 mg·kg−1·day−1 in the drinking water) during the last 4 wk (i.e., after the onset of metabolic syndrome), and the other received no treatment (placebo; P). Body weight was measured daily. Systolic blood pressure and fasting plasma uric acid (UA), insulin, and triglycerides were measured at baseline and at 4 and 8 wk. Renal hemodynamics and histomorphology were evaluated at the end of the study. A high-fructose diet was associated with hyperuricemia, hypertension, as well as increased plasma triglycerides and insulin. Compared with fructose+P, fructose+Fx rats showed significantly lowered blood pressure, UA, triglycerides, and insulin ( P < 0.05 for all comparisons). Moreover, fructose+Fx rats had significantly reduced glomerular pressure, renal vasoconstriction, and afferent arteriolar area relative to fructose+P rats. Fx treatment in rats on a normal diet had no significant effects. In conclusion, normalization of plasma UA with Fx in rats with metabolic syndrome alleviated both metabolic and glomerular hemodynamic and morphological alterations. These results provide further evidence for a pathogenic role of hyperuricemia in fructose-mediated metabolic syndrome.


2019 ◽  
Vol 15 (6) ◽  
pp. 678-684
Author(s):  
Biljana Nigović ◽  
Jakov Vlak

Background: High uric acid serum level, hyperuricemia, is now associated with many diseases such as gout, chronic kidney disease, hypertension, coronary artery disease and diabetes. Febuxostat is a novel selective xanthine oxidase inhibitor approved for the treatment of hyperuricemia. Objective: The aim of this study was to develop a first analytical method for the simultaneous determination of febuxostat and uric acid. Methods: An unmodified boron-doped diamond electrode provided concurrent quantitation of drug at low levels and uric acid, which has clinical significance in the diagnosis and therapy of hyperuricemia, at relatively high concentrations. The direct square-wave voltammetric method was applied to the analysis of both analytes in human serum samples. Results: Under the optimized conditions, the linear response of peak current on febuxostat concentration was achieved in the range from 7.5 × 10-7 to 3 × 10-5 M, while uric acid showed two linear ranges of 5 × 10-6 - 5 × 10-5 M and 5 × 10-5 - 2 × 10-4 M. The method was successfully utilised for quantification of both analytes in human serum samples. Good recoveries were obtained without interference from common inorganic cations and anions as well as glucose, dopamine, ascorbic and folic acids at concentrations expected in physiological conditions. Conclusion: The great benefits of developed method are fast analysis (only 7.5 s for run), low cost and simplicity of performance.


2020 ◽  
Vol 20 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Mahnaz Arian ◽  
Mina AkbariRad ◽  
Ahmad Bagheri Moghaddam ◽  
Abdollah Firoozi ◽  
Mohammad Jami

: Allopurinol is an FDA -Approved xanthine oxidase inhibitor, which is effective in the treatment of gout, hyperuricemia and uremic kidney stones in patients with an increased level of uric acid excretion. Xanthine oxidase acts by converting hypoxanthine and xanthine into uric acid, and therefore its inhibition results in decreased production of uric acid. The most common side effects of this medication are as follows: maculopapular rashes, hives, itching, headache, dizziness, abnormal hair loss, fever and hypersensitivity reaction. Case Presentation: This report represents a case of drug-induced meningitis of a senile man who ended up in the ICU due to the remarkably reduced state of consciousness.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yong Wang ◽  
Wentao Qi ◽  
Ge Song ◽  
Shaojie Pang ◽  
Zhenzhen Peng ◽  
...  

High-fructose diet induced changes in gut microbiota structure and function, which have been linked to inflammatory response. However, the effect of small or appropriate doses of fructose on gut microbiota and inflammatory cytokines is not fully understood. Hence, the abundance changes of gut microbiota in fructose-treated Sprague-Dawley rats were analyzed by 16S rRNA sequencing. The effects of fructose diet on metabolic disorders were evaluated by blood biochemical parameter test, histological analysis, short-chain fatty acid (SCFA) analysis, ELISA analysis, and Western blot. Rats were intragastrically administered with pure fructose at the dose of 0 (Con), 2.6 (Fru-L), 5.3 (Fru-M), and 10.5 g/kg/day (Fru-H) for 20 weeks. The results showed that there were 36.5% increase of uric acid level in the Fru-H group when compared with the Con group. The serum proinflammatory cytokines (IL-6, TNF-α, and MIP-2) were significantly increased ( P < 0.05 ), and the anti-inflammatory cytokine IL-10 was significantly decreased ( P < 0.05 ) with fructose treatment. A higher fructose intake induced lipid accumulation in the liver and inflammatory cell infiltration in the pancreas and colon and increased the abundances of Lachnospira, Parasutterella, Marvinbryantia, and Blantia in colonic contents. Fructose intake increased the expressions of lipid accumulation proteins including perilipin-1, ADRP, and Tip-47 in the colon. Moreover, the higher level intake of fructose impaired intestinal barrier function due to the decrease of the expression of tight junction proteins (ZO-1 and occludin). In summary, there were no negative effects on body weight, fasting blood glucose, gut microbiota, and SCFAs in colonic contents of rats when fructose intake is in small or appropriate doses. High intake of fructose can increase uric acid, proinflammatory cytokines, intestinal permeability, and lipid accumulation in the liver and induce inflammatory response in the pancreas and colon.


2010 ◽  
Vol 77 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Torben Larsen ◽  
Kasey M Moyes

The primary objective of this study is to validate a new fast method for determination of uric acid in milk. The method is based on an enzymatic-fluorometric technique that requires minimal pre-treatment of milk samples. The present determination of uric acid is based on the enzymatic oxidation of uric acid to 5-hydroxyisourate via uricase where the liberated hydrogen peroxide reacts with 10-acetyl-3,7-dihydroxyphenoxazine via peroxidase and the fluorescent product, resorufin, is measured fluorometrically. Fresh composite milk samples (n=1,072) were collected from both Jersey (n=38) and Danish Holstein (n=106) cows from one local herd. The average inter- and intra-assay variations were 7·1% and 3·0%, respectively. Percent recovery averaged 103·4, 107·0 and 107·5% for samples spiked with 20, 40 or 60 μmof standard, respectively, with a correlation (r=0·98;P<0·001) observed between the observed and expected uric acid concentrations. A positive correlation (r=0·96;P<0·001) was observed between uric acid concentrations using the present method and a reference assay. Storage at 4°C for 24 h resulted in lower (P<0·01) uric acid concentrations in milk when compared with no storage or samples stored at −18°C for 24 h. Addition of either allopurinol (a xanthine oxidase inhibitor) or dimethylsulfoxide (a solvent for allopurinol) did not affect milk uric acid concentrations (P=0·96) and may indicate that heat treatment before storage and analysis was sufficient to degrade xanthine oxidase activity in milk. No relationship was observed between milk uric acid and milk yield and milk components. Authors recommend a single heat treatment (82°C for 10 min) followed by either an immediate analysis of fresh milk samples or storage at −18°C until further analysis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tomohito Gohda ◽  
Naotake Yanagisawa ◽  
Maki Murakoshi ◽  
Seiji Ueda ◽  
Yuji Nishizaki ◽  
...  

Background: The levels of circulating tumor necrosis factor receptor (TNFR) 1 and 2 help predict the future decline of estimated glomerular filtration rate (eGFR) chiefly in patients with diabetes. It has been recently reported that the change ratio in TNFR1 by SGLT2 inhibitor treatment is also related with future GFR decline in patients with diabetes. The aims of this study are to investigate the association between baseline TNFR levels and early change in TNFR levels by the non-purine selective xanthine oxidase inhibitor, febuxostat, and future eGFR decline chiefly in chronic kidney disease (CKD) patients without diabetes.Methods: We conducted a post-hoc analysis of the FEATHER study on patients with asymptomatic hyperuricemia and CKD stage 3, who were randomly assigned febuxostat 40 mg/day or matched placebo. This analysis included 426 patients in whom baseline stored samples were available. Serum TNFR levels at baseline were measured using enzyme-linked immunosorbent assay. Those levels were also measured using 12-week stored samples from 197 randomly selected patients.Results: Compared with placebo, short-term febuxostat treatment significantly decreased the median percent change from baseline in serum uric acid (−45.05, 95% CI −48.90 to −41.24 mg/dL), TNFR1 (1.10, 95% CI−2.25 to 4.40), and TNFR2 (1.66, 95% CI −1.72 to 4.93), but not TNFR levels. Over a median follow-up of 105 weeks, 30 patients (7.0%) experienced 30% eGFR decline from baseline. In the Cox multivariate model, high levels of baseline TNFR predicted a 30% eGFR decline, even after adjusting for age, sex, systolic blood pressure, high sensitivity C-reactive protein, uric acid, and presence or absence of febuxostat treatment and diabetes, in addition to baseline albumin to creatinine ratio and eGFR.Conclusion: Early change in circulating TNFR levels failed to predict future eGFR decline; however, regardless of febuxostat treatment, the elevated baseline level of TNFR was a strong predictor of 30% eGFR decline even in chiefly non-diabetic CKD patients with asymptomatic hyperuricemia.


Sign in / Sign up

Export Citation Format

Share Document