scholarly journals TRAK proteins encode distinct MIRO-dependent and MIRO-independent mechanisms for associating with the mitochondrial outer membrane

2021 ◽  
Author(s):  
Lili Mitchell ◽  
Kathryn E. Reda ◽  
Hijab Fatima ◽  
Claudia E. Vasquez ◽  
Omar Alberto Quintero-Carmona

Mitochondria are essential to proper cell function, mislocalization of mitochondria leads to disease. Previous research has indicated that MYO19, an unconventional myosin, localizes to the mitochondria outer membrane (MOM) and enables actin-based mitochondrial movement along the cytoskeleton. MOM insertion of MYO19 is assisted by the small GTPase MIRO, a "molecular switch" that facilitates MYO19/mitochondria interactions. MIRO serves as a recruiter of MYO19 to the MOM, rather than the tether/receptor that mediates attachment, as MYO19 contains a second, MIRO-independent mitochondrial association domain. MIRO proteins have previously been reported to serve as attachment points for the microtubule-based motors through interactions with the adaptor protein, TRAK. Past research has identified a MIRO-binding domain of TRAK that directly participates in the interaction with MIRO. We chose to investigate whether the interactions between TRAK and MOM paralleled our hypothesized mechanism for MYO19/MOM interactions by examining the MIRO-mediated enhancement of TRAK protein localization to mitochondria, by identifying the location of a MIRO-independent mitochondrial association domain in the c-terminus of TRAK proteins, and by examining the steady-state binding kinetics of various TRAK constructs to mitochondria. We interpret these data to indicate that MIRO proteins serve in the initial recruitment of TRAK proteins to mitochondria, but that the MIRO-independent domain plays a significant role in long-term association between TRAK and MOM.

1998 ◽  
Vol 141 (6) ◽  
pp. 1371-1381 ◽  
Author(s):  
Istvan Boldogh ◽  
Nikola Vojtov ◽  
Sharon Karmon ◽  
Liza A. Pon

Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2587-2596 ◽  
Author(s):  
Jan Tommassen

The cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic α-helices, integral outer-membrane proteins (OMPs) form β-barrels. Similar β-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these β-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of β-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial β-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.


1999 ◽  
Vol 341 (3) ◽  
pp. 777-784 ◽  
Author(s):  
Feike R. VAN DER LEIJ ◽  
Anita M. KRAM ◽  
Beatrijs BARTELDS ◽  
Han ROELOFSEN ◽  
Gioia B. SMID ◽  
...  

Carnitine palmitoyltransferase I (CPT I) is a key enzyme in the regulation of β-oxidation. The topology of this enzyme has been difficult to elucidate by biochemical methods. We studied the topology of a fusion protein of muscle-type CPT I (M-CPT I) and green fluorescent protein (GFP) by microscopical means. To validate the use of the fusion protein, designated CPT I-GFP, we checked whether the main characteristics of native CPT I were retained. CPT I-GFP was expressed in HeLa cells after stable transfection. Confocal laser scanning microscopy in living cells revealed an extranuclear punctate distribution of CPT I-GFP, which coincided with a mitochondrial fluorescent marker. Immunogold electron microscopy localized CPT I-GFP almost exclusively to the mitochondrial periphery and showed that the C-terminus of CPT I must be on the cytosolic face of the mitochondrial outer membrane. Western analysis showed a protein that was 6 kDa smaller than predicted, which is consistent with previous results for the native M-CPT I. Mitochondria from CPT I-GFP-expressing cells showed an increased CPT activity that was inhibited by malonyl-CoA and was lost on solubilization with Triton X-100. We conclude that CPT I-GFP adopts the same topology as native CPT I and that its C-terminus is located on the cytosolic face of the mitochondrial outer membrane. The evidence supports a recently proposed model for the domain structure of CPT I based on biochemical evidence.


2020 ◽  
Vol 21 (19) ◽  
pp. 7262
Author(s):  
Sebastian Kreimendahl ◽  
Joachim Rassow

Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson’s disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.


2003 ◽  
Vol 14 (11) ◽  
pp. 4618-4627 ◽  
Author(s):  
Istvan R. Boldogh ◽  
Dan W. Nowakowski ◽  
Hyeong-Cheol Yang ◽  
Haesung Chung ◽  
Sharon Karmon ◽  
...  

Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2–3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.


1994 ◽  
Vol 126 (6) ◽  
pp. 1375-1391 ◽  
Author(s):  
S M Burgess ◽  
M Delannoy ◽  
R E Jensen

In the yeast Saccharomyces cerevisiae, mitochondria are elongated organelles which form a reticulum around the cell periphery. To determine the mechanism by which mitochondrial shape is established and maintained, we screened yeast mutants for those defective in mitochondrial morphology. One of these mutants, mmm1, is temperature-sensitive for the external shape of its mitochondria. At the restrictive temperature, elongated mitochondria appear to quickly collapse into large, spherical organelles. Upon return to the permissive temperature, wild-type mitochondrial structure is restored. The morphology of other cellular organelles is not affected in mmm1 mutants, and mmm1 does not disrupt normal actin or tubulin organization. Cells disrupted in the MMM1 gene are inviable when grown on nonfermentable carbon sources and show abnormal mitochondrial morphology at all temperatures. The lethality of mmm1 mutants appears to result from the inability to segregate the aberrant-shaped mitochondria into daughter cells. Mitochondrial structure is therefore important for normal cell function. Mmm1p is located in the mitochondrial outer membrane, with a large carboxyl-terminal domain facing the cytosol. We propose that Mmm1p maintains mitochondria in an elongated shape by attaching the mitochondrion to an external framework, such as the cytoskeleton.


2020 ◽  
Author(s):  
Mulaka Maruthi ◽  
Liqin Ling ◽  
Jing zhou ◽  
Hangjun Ke

AbstractMalaria remains a huge global health burden and control of this disease has run into a severe bottleneck. To defeat malaria and reach the goal of eradication, a deep understanding of parasite biology is urgently needed. The mitochondrion of the malaria parasite is essential throughout the parasite’s lifecycle and has been validated as a clinical drug target. In the asexual development of Plasmodium spp., the single mitochondrion grows from a small tubular structure to a complex branched network. At the end of schizogony when 8-32 merozoites are produced, the branched mitochondrion is precisely divided, distributing one mitochondrion to each forming daughter merozoite. In mosquito and liver stages, the giant mitochondrial network is split into thousands of pieces then daughter mitochondria are segregated into individual progeny. Despite the significance of mitochondrial fission in Plasmodium, the underlying mechanism is largely unknown. Studies of mitochondrial fission in model eukaryotes have revealed that several mitochondrial fission adaptor proteins are involved in recruiting dynamin GTPases to physically split mitochondrial membranes. Apicomplexan parasites, however, share no identifiable homologs of mitochondrial fission adaptor proteins of yeast or human, except for Fis1. Here, we investigated the localization and essentiality of the Fis1 homolog in Plasmodium falciparum, PfFis1 (PF3D7_1325600), during the asexual lifecycle. We found that PfFis1 requires an intact C-terminus for mitochondrial localization but is not essential for parasite development or mitochondrial fission. The dispensable role of PfFis1 indicates Plasmodium contains additional fission adaptor proteins on the mitochondrial outer membrane that could be essential for mitochondrial fission.ImportanceMalaria is responsible for over 230 million clinical cases and ∼ half a million deaths each year. The single mitochondrion of the malaria parasite functions as a metabolic hub throughout the parasite’s developmental cycle as well as a source of ATP in certain stages. To pass on its essential functions, the parasite’s mitochondrion needs to be properly divided and segregated into all progeny during cell division via a process named mitochondrial fission. Due to the divergent nature of Plasmodium spp., molecular players involved in mitochondrial fission and their mechanisms of action remain largely unknown. We found that Fis1, the only identifiable mitochondrial fission adaptor protein evolutionarily conserved in the phylum of Apicomplexa, however, is not essential for Plasmodium falciparum. Our data suggest that malaria parasites use redundant fission adaptor proteins on the mitochondrial outer membrane to mediate the fission process.


2001 ◽  
Vol 12 (8) ◽  
pp. 2482-2496 ◽  
Author(s):  
Nica Borgese ◽  
Ilaria Gazzoni ◽  
Massimo Barberi ◽  
Sara Colombo ◽  
Emanuela Pedrazzini

Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b 5, a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.


Author(s):  
Xiao-Wei Guo

Voltage-dependent, anion-selective channels (VDAC) are formed in the mitochondrial outer membrane (mitOM) by a 30-kDa polypeptide. These channels form ordered 2D arrays when mitOMs from Neurospora crassa are treated with soluble phospholipase A2. We obtain low-dose electron microscopic images of unstained specimens of VDAC crystals preserved in vitreous ice, using a Philips EM420 equipped with a Gatan cryo-transfer stage. We then use correlation analysis to compute average projections of the channel crystals. The procedure involves Fourier-filtration of a region within a crystal field to obtain a preliminary average that is subsequently cross-correlated with the entire crystal. Subregions are windowed from the crystal image at coordinates of peaks in the cross-correlation function (CCF, see Figures 1 and 2) and summed to form averages (Figure 3).The VDAC channel forms several different types of crystalline arrays in mitOMs. The polymorph first observed during phospholipase treatment is a parallelogram array (a=13 run, b=11.5 run, θ==109°) containing 6 water-filled pores per unit cell. Figure 1 shows the CCF of a sub-field of such an “oblique” array used to compute the correlation average of Figure 3A. With increased phospholipase treatment, other polymorphs are observed, often co-existing within the same crystal. For example, two distinct (but closely related) types of lattices occur in the field corresponding to the CCF of Figure 2: a “contracted” version of the parallelogram lattice (a=13 run, b=10 run, θ=99°), and a near-rectangular lattice (a=8.5 run, b=5 nm). The pattern of maxima in this CCF suggests that a third, near-hexagonal lattice (a=4.5 nm) may also be present. The correlation averages of Figures 3B-D were computed from polycrystalline fields, using peak coordinates in regions of CCFs corresponding to each of the three lattice types.


Sign in / Sign up

Export Citation Format

Share Document