scholarly journals The biaxial mechanics of thermally denaturing skin - Part I: Experiments

2021 ◽  
Author(s):  
William D Meador ◽  
Gabriella P P Sugerman ◽  
Adrian Buganza Tepole ◽  
Manuel Karl Rausch

The mechanics of collageneous soft tissues, such as skin, are sensitive to heat. Thus, quantifying and modeling thermo-mechanical coupling of skin is critical to our understanding of skin's physiology, pathophysiology, as well as its treatment. However, key gaps persist in our knowledge about skin's coupled thermo-mechanics. Among them, we haven't quantified the role of skin's microstructural organization in its response to superphysiological loading. To fill this gap, we conducted a comprehensive set of experiments in which we combined biaxial mechanical testing with histology and two-photon imaging under liquid heat treatment. Among other observations, we found that unconstrained skin, when exposed to high temperatures, shrinks anisotropically with the principle direction of shrinkage being aligned with collagen's principle orientation. Additionally, we found that when skin is isometrically constrained, it produces significant forces during denaturing that are also anisotropic. Finally, we found that denaturation significantly alters the mechanical behavior of skin. For short exposure times, this alteration is reflected in a reduction of stiffness at high strains. At long exposure times, the tissue softened to a point where it became untestable. We supplemented our findings with confirmation of collagen denaturation in skin via loss of birefringence and second harmonic generation. Finally, we captured all time-, temperature-, and direction-dependent experimental findings in a hypothetical model. Thus, this work fills a fundamental gap in our current understanding of skin thermo-mechanics and will support future developments in thermal injury prevention, thermal injury management, and thermal therapeutics of skin.

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 4009-4019
Author(s):  
Artur Movsesyan ◽  
Gwénaëlle Lamri ◽  
Sergei Kostcheev ◽  
Anke Horneber ◽  
Annika Bräuer ◽  
...  

AbstractMulti-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1341-1358
Author(s):  
Jialin Ma ◽  
Mengtao Sun

AbstractIn this review, we focus on the summary of nonlinear optical microscopies (NOMs), which are stimulated Raman scattering (SRS), coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited fluorescence (TPEF). The introduction is divided into two parts: the principle of SRS, CARS, TPEF, and SHG and their application to biology and two-dimensional materials. We also introduce the connections and differences between them. We also discuss the principle of plasmon-enhanced NOM and its application in the above two aspects. This paper not only summarizes the research progress in the frontier but also deepens the readers’ understanding of the physical principles of these NOMs.


2001 ◽  
Vol 10 (01) ◽  
pp. 65-77 ◽  
Author(s):  
OU FA ◽  
HE MINGGAO ◽  
WU FUGEN

A new model to describe the origin of optical nonlinearity is presented. In this model, the interaction between light and medium is reduced to the coupling of photons with phonons, which occurs in the crystal lattice vibrating anharmonically. Then the optical nonlinearity originates from the nonlinear photon–phonon coupling or the interaction among phonons themselves. In this paper, more attention is drawn to the latter. By the given model, (1) degenerate and (2) nondegenerate parametric oscillations, (3) Stokes and (4) anti-Stokes Raman scattering, (5) sum-frequency and (6) second harmonic generation and (7) two-photon absorption are dealt with systematically and quantum-mechanically. The results of theoretical analysis show that the effects (1)–(4) are associated with threshold phenomenon, whereas the effects (5)–(7) with the saturation phenomenon.


Intensity dependent quenching and reversal of the two-photon fluorescence patterns in Rhodamine 6G and DPA, of picosecond pulses from a mode-locked ruby laser have been investigated by measurements of the two-photon fluorescence efficiencies of these dyes. While for Rhodamine 6G there was a marked departure from the square law dependence at high laser intensities, the experimental curve for DPA showed no evidence of quenching. When excited by a mode-locked neodymium: glass laser Rhodamine 6G fluorescence was not quenched at fluxes as high as 5 x 10 30 photons cm -2 s -1 but in Rhodamine B quenching appeared at a laser flux of 3 x 10 27 photons cm -2 s -1 . These quenching results and measurements of the absorption of pulses by Rhodamine 6G, previously excited by second harmonic pulses, are explained by the effects of single photon absorption and stimulated emission from the S 1 and S 2 excited singlet states. A square pulse approximation has been employed to solve the general rate equations and the fitting of the calculated curves to the experimental results gave values for the stimulated emission and absorption cross-sections of the S 1 and S 2 states of Rhodamine 6G and for the relaxation time (~ 2 ps) between the vibrational manifolds of these excited states. Taking into account random phase and amplitude fluctuations of the picosecond pulses, time and space averaged two-photon fluorescence profiles, using these values of the dye parameters, showed quenching and reversal of the patterns for the laser pulse intensities at which these effects were experimentally observed. The possibilities of frequency tunable pulses, of transform-limited durations, from mode-locked dye lasers employed with an electro-optical streak camera of time-resolution equal to that of the pulse durations (~ 2 ps) for time-resolved excited state molecular spectroscopy are briefly considered.


2009 ◽  
Vol 14 (2) ◽  
pp. 020503 ◽  
Author(s):  
Shuangmu Zhuo ◽  
Jianxin Chen ◽  
Shusen Xie ◽  
Zhibin Hong ◽  
Xingshan Jiang

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Emily A. Gibson ◽  
Omid Masihzadeh ◽  
Tim C. Lei ◽  
David A. Ammar ◽  
Malik Y. Kahook

We review multiphoton microscopy (MPM) including two-photon autofluorescence (2PAF), second harmonic generation (SHG), third harmonic generation (THG), fluorescence lifetime (FLIM), and coherent anti-Stokes Raman Scattering (CARS) with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.


Sign in / Sign up

Export Citation Format

Share Document