scholarly journals Natural variation in the irld gene family affects insulin/IGF signaling and starvation resistance

2021 ◽  
Author(s):  
Amy K Webster ◽  
Rojin Chitrakar ◽  
Maya Powell ◽  
Jingxian Chen ◽  
Kinsey Fisher ◽  
...  

Starvation resistance is a fundamental, disease-relevant trait, but the genetic basis of its natural variation is unknown. We developed a synthetic population-sequencing approach to measure starvation resistance for many wild C. elegans strains simultaneously. We identified three quantitative trait loci with variants in 16 insulin/EGF receptor-like domain (irld) family members. We show that four irld genes affect starvation resistance by regulating insulin/IGF signaling. We propose that IRLD proteins bind insulin-like peptides to modify signaling in the sensory nervous system thereby affecting organismal physiology. This work demonstrates efficacy of using population sequencing to dissect a complex trait, identifies irld genes that regulate insulin/IGF signaling, and shows that an expanded gene family modifies a deeply conserved signaling pathway to affect a fitness-proximal trait.

2017 ◽  
Author(s):  
Michael P. O’Donnell ◽  
Pin-Hao Chao ◽  
Jan E. Kammenga ◽  
Piali Sengupta

ABSTRACTAnimals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via the PDFR-1 neuropeptide receptor. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits.Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state.AUTHOR SUMMARYDecision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.


2019 ◽  
Author(s):  
Amy K. Webster ◽  
Anthony Hung ◽  
Brad T. Moore ◽  
Ryan Guzman ◽  
James M. Jordan ◽  
...  

ABSTRACTTo understand the genetic basis of complex traits, it is important to be able to efficiently phenotype many genetically distinct individuals. In the nematode Caenorhabditis elegans, individuals have been isolated from diverse populations around the globe and whole-genome sequenced. As a result, hundreds of wild strains with known genome sequences can be used for genome-wide association studies (GWAS). However, phenotypic analysis of these strains can be laborious, particularly for quantitative traits requiring multiple measurements per strain. Starvation resistance is likely a fitness-proximal trait for nematodes, and it is related to metabolic disease risk in humans. However, natural variation in C. elegans starvation resistance has not been characterized, and precise measurement of the trait is time-intensive. Here, we developed a population selection and sequencing-based approach to phenotype starvation resistance in a pool of 96 wild strains. We used restriction site-associated DNA sequencing (RAD-seq) to infer the frequency of each strain among survivors in a mixed culture over time during starvation. We used manual starvation survival assays to validate the trait data, confirming that strains that increased in frequency over time are starvation-resistant relative to strains that decreased in frequency. These results document natural variation in starvation resistance. Further, we found that variation in starvation resistance is significantly associated with variation at a region on chromosome III. Using a near-isogenic line (NIL), we showed the importance of this genomic interval for starvation resistance. This study demonstrates the feasibility of using population selection and sequencing in an animal model for phenotypic analyses of quantitative traits, reveals natural variation of starvation resistance in C. elegans, and identifies a genomic region that contributes to such variation.


2018 ◽  
Vol 93 (3) ◽  
pp. 319-331 ◽  
Author(s):  
P. Andrus ◽  
R. Rae

AbstractThe genetic mechanisms of how free-living nematodes evolved into parasites are unknown. Current genetic model nematodes (e.g.Caenorhabditis elegans) are not well suited to provide the answer, and mammalian parasites are expensive and logistically difficult to maintain. Here we propose the terrestrial gastropod parasitePhasmarhabditis hermaphroditaas a new alternative to study the evolution of parasitism, and outline the methodology of how to keepP. hermaphroditain the lab for genetic experiments. We show thatP. hermaphrodita(and several otherPhasmarhabditisspecies) are easy to isolate and identify from slugs and snails from around the UK. We outline how to make isogenic lines using ‘semi-natural’ conditions to reduce in-lab evolution, and how to optimize growth using nematode growth media (NGM) agar and naturally isolated bacteria. We show thatP. hermaphroditais amenable to forward genetics and thatuncandsmamutants can be generated using formaldehyde mutagenesis. We also detail the procedures needed to carry out genetic crosses. Furthermore, we show natural variation within ourPhasmarhabditiscollection, with isolates displaying differences in survival when exposed to high temperatures and pH, which facilitates micro and macro evolutionary studies. In summary, we believe that this genetically amenable parasite that shares many attributes withC. elegansas well as being in Clade 5, which contains many animal, plant and arthropod parasites, could be an excellent model to understand the genetic basis of parasitism in the Nematoda.


2020 ◽  
Author(s):  
Nikolaos Tataridas-Pallas ◽  
Maximillian Thompson ◽  
Alexander Howard ◽  
Ian Brown ◽  
Marina Ezcurra ◽  
...  

AbstractThe feeling of hunger or satiety results from integration of the sensory nervous system with other physiological and metabolic cues. This regulates food intake, maintains homeostasis and prevents disease. In C. elegans, chemosensory neurons sense food and relay information to the rest of the animal via hormones to control food-related behaviour and physiology. Here we identify a new component of this system, SKN-1B which acts as a central food-responsive node, ultimately controlling satiety and metabolic homeostasis. SKN-1B, an ortholog of mammalian NF-E2 related transcription factors (Nrfs), has previously been implicated with metabolism and respiration, because can mediate the increased lifespan incurred by dietary restriction. We show that actually SKN-1B is not essential for dietary restriction longevity and instead, controls a variety of food-related behaviours. It acts in two hypothalamus-like ASI neurons to sense food, communicate nutritional status to the organism, and control satiety and exploratory behaviours. This is achieved by SKN-1B modulating endocrine signalling pathways (IIS and TGF-β), and by promoting a robust mitochondrial network. Our data suggest a food-sensing and satiety role for mammalian Nrf proteins.


2015 ◽  
Author(s):  
Roland F. Schwarz ◽  
Robyn Branicky ◽  
Laura J. Grundy ◽  
William R. Schafer ◽  
André E.X. Brown

Locomotion is driven by shape changes coordinated by the nervous system through time; thus, enumerating an animal's complete repertoire of shape transitions would provide a basis for a comprehensive understanding of locomotor behaviour. Here we introduce a discrete representation of behaviour in the nematode C. elegans. At each point in time, the worm's posture is approximated by its closest matching template from a set of 90 postures and locomotion is represented as sequences of postures. The frequency distribution of postural sequences is heavy-tailed with a core of frequent behaviours and a much larger set of rarely used behaviours. Responses to optogenetic and environmental stimuli can be quantified as changes in postural syntax: worms show different preferences for different sequences of postures drawn from the same set of templates. A discrete representation of behaviour will enable the use of methods developed for other kinds of discrete data in bioinformatics and language processing to be harnessed for the study of behaviour.


2019 ◽  
Vol 9 (10) ◽  
pp. 3477-3488 ◽  
Author(s):  
Amy K. Webster ◽  
Anthony Hung ◽  
Brad T. Moore ◽  
Ryan Guzman ◽  
James M. Jordan ◽  
...  

To understand the genetic basis of complex traits, it is important to be able to efficiently phenotype many genetically distinct individuals. In the nematode Caenorhabditis elegans, individuals have been isolated from diverse populations around the globe and whole-genome sequenced. As a result, hundreds of wild strains with known genome sequences can be used for genome-wide association studies (GWAS). However, phenotypic analysis of these strains can be laborious, particularly for quantitative traits requiring multiple measurements per strain. Starvation resistance is likely a fitness-proximal trait for nematodes, and it is related to metabolic disease risk in humans. However, natural variation in C. elegans starvation resistance has not been systematically characterized, and precise measurement of the trait is time-intensive. Here, we developed a population-selection-and-sequencing-based approach to phenotype starvation resistance in a pool of 96 wild strains. We used restriction site-associated DNA sequencing (RAD-seq) to infer the frequency of each strain among survivors in a mixed culture over time during starvation. We used manual starvation survival assays to validate the trait data, confirming that strains that increased in frequency over time are starvation-resistant relative to strains that decreased in frequency. Further, we found that variation in starvation resistance is significantly associated with variation at a region on chromosome III. Using a near-isogenic line (NIL), we showed the importance of this genomic interval for starvation resistance. This study demonstrates the feasibility of using population selection and sequencing in an animal model for phenotypic analysis of quantitative traits, documents natural variation of starvation resistance in C. elegans, and identifies a genomic region that contributes to such variation.


2011 ◽  
Vol 71 (10) ◽  
Author(s):  
J Arnold ◽  
ML Barcena de Arellano ◽  
C Rüster ◽  
A Schneider ◽  
S Mechsner

Sign in / Sign up

Export Citation Format

Share Document