scholarly journals Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans

2017 ◽  
Author(s):  
Michael P. O’Donnell ◽  
Pin-Hao Chao ◽  
Jan E. Kammenga ◽  
Piali Sengupta

ABSTRACTAnimals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via the PDFR-1 neuropeptide receptor. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits.Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state.AUTHOR SUMMARYDecision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.

2021 ◽  
Vol 14 ◽  
Author(s):  
Umer Saleem Bhat ◽  
Navneet Shahi ◽  
Siju Surendran ◽  
Kavita Babu

One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Marie Gendrel ◽  
Emily G Atlas ◽  
Oliver Hobert

Neurotransmitter maps are important complements to anatomical maps and represent an invaluable resource to understand nervous system function and development. We report here a comprehensive map of neurons in the C. elegans nervous system that contain the neurotransmitter GABA, revealing twice as many GABA-positive neuron classes as previously reported. We define previously unknown glia-like cells that take up GABA, as well as 'GABA uptake neurons' which do not synthesize GABA but take it up from the extracellular environment, and we map the expression of previously uncharacterized ionotropic GABA receptors. We use the map of GABA-positive neurons for a comprehensive analysis of transcriptional regulators that define the GABA phenotype. We synthesize our findings of specification of GABAergic neurons with previous reports on the specification of glutamatergic and cholinergic neurons into a nervous system-wide regulatory map which defines neurotransmitter specification mechanisms for more than half of all neuron classes in C. elegans.


2017 ◽  
Author(s):  
◽  
Bradly Alicea

ABSTRACTThe relatively new field of connectomics provides us with a unique window into nervous system function. In the model organism Caenorhabditis elegans, this promise is even greater due to the relatively small number of cells (302) in its nervous system. While the adult C. elegans connectome has been characterized, the emergence of these networks in development has yet to be established. In this paper, we approach this problem using secondary data describing the birth times of terminally-differentiated cells as they appear in the embryo and a connectomics model for nervous system cells in the adult hermaphrodite. By combining these two sources of data, we can better understand patterns that emerge in an incipient connectome. This includes identifying at what point in embryogenesis the cells of a connectome first comes into being, potentially observing some of the earliest neuron-neuron interactions, and making comparisons between the formally-defined connectome and developmental cell lineages. An analysis is also conducted to root terminally-differentiated cells in their developmental cell lineage precursors. This reveals subnetworks with different properties at 300 minutes of embryogenesis. Additional investigations reveal the spatial position of neuronal cells born during pre-hatch development, both within and outside the connectome model, in the context of all developmental cells in the embryo. Overall, these analyses reveal important information about the birth order of specific cells in the connectome, key building blocks of global connectivity, and how these structures correspond to key events in early development.


2020 ◽  
Author(s):  
Nikolaos Tataridas-Pallas ◽  
Maximillian Thompson ◽  
Alexander Howard ◽  
Ian Brown ◽  
Marina Ezcurra ◽  
...  

AbstractThe feeling of hunger or satiety results from integration of the sensory nervous system with other physiological and metabolic cues. This regulates food intake, maintains homeostasis and prevents disease. In C. elegans, chemosensory neurons sense food and relay information to the rest of the animal via hormones to control food-related behaviour and physiology. Here we identify a new component of this system, SKN-1B which acts as a central food-responsive node, ultimately controlling satiety and metabolic homeostasis. SKN-1B, an ortholog of mammalian NF-E2 related transcription factors (Nrfs), has previously been implicated with metabolism and respiration, because can mediate the increased lifespan incurred by dietary restriction. We show that actually SKN-1B is not essential for dietary restriction longevity and instead, controls a variety of food-related behaviours. It acts in two hypothalamus-like ASI neurons to sense food, communicate nutritional status to the organism, and control satiety and exploratory behaviours. This is achieved by SKN-1B modulating endocrine signalling pathways (IIS and TGF-β), and by promoting a robust mitochondrial network. Our data suggest a food-sensing and satiety role for mammalian Nrf proteins.


2017 ◽  
Author(s):  
Sarah K. Nordquist ◽  
Sofia R. Smith ◽  
Jonathan T. Pierce

ABSTRACTIndividuals with Down syndrome have neurological and muscle impairments due to an additional copy of the human 21st chromosome (HSA21). Only a few of ~200 HSA21 genes encoding protein have been linked to specific Down syndrome phenotypes, while the remainder are understudied. To identify poorly characterized HSA21 genes required for nervous system function, we studied behavioral phenotypes caused by loss-of-function mutations in conserved HSA21 orthologs in the nematode Caenorhabditis elegans. We identified ten HSA21 orthologs that are required for neuromuscular behaviors: cle-1 (COL18A1), cysl-2 (CBS), dnsn-1 (DONSON), eva-1 (EVA1C), mtq-2 (N6ATM1), ncam-1 (NCAM2), pad-2 (POFUT2), pdxk-1 (PDXK), rnt-1 (RUNX1), and unc-26 (SYNJ1). We also found that three of these genes are required for normal release of the neurotransmitter acetylcholine. This includes a known synaptic gene unc-26 (SYNJ1), as well as uncharacterized genes pdxk-1 (PDXK) and mtq-2 (N6ATM1). As the first systematic functional analysis of HSA21 orthologs, this study may serve as a platform to understand genes that underlie phenotypes associated with Down syndrome.ARTICLE SUMMARYDown syndrome causes neurological and muscle dysfunction due to an extra 21st chromosome. This chromosome has over 200 genes, most of which are understudied. To address this, we studied whether reducing function of these gene equivalents in the worm C. elegans caused neuronal or muscle defects. We identified ten genes conserved between human and worm that mediate function of behaviors. Among these, we show the uncharacterized genes mtq-2 and pdxk-1 are important for synaptic transmission and are exclusively expressed in nervous system. Our analysis may reveal functions of poorly studied genes that affect nervous system function in Down syndrome.


2017 ◽  
Author(s):  
Byunghyuk Kim ◽  
Scott W. Emmons

ABSTRACTNervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans, we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Byunghyuk Kim ◽  
Scott W Emmons

Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans, we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.


2019 ◽  
Author(s):  
Sean M. Flynn ◽  
Changchun Chen ◽  
Murat Artan ◽  
Stephen Barratt ◽  
Alastair Crisp ◽  
...  

AbstractBesides well-known immune roles, the evolutionarily ancient cytokine interleukin-17 (IL-17) modulates neural circuit function. We investigate how IL-17 signals in neurons, and the extent to which this signaling can alter organismal phenotypes. We combine immunoprecipitation and mass spectrometry to biochemically characterize endogenous signaling complexes that function downstream of IL-17 receptors in C. elegans (Ce) neurons. We identify the Ce ortholog of MALT1 as a critical output of the pathway. MALT1 was not previously implicated in IL-17 signaling or in nervous system function. MALT1 forms a complex with homologs of Act1 and IRAK and functions both as a scaffold for IκB recruitment, and as a protease. MALT1 is expressed broadly in the Ce nervous system, and neuronal IL-17–MALT1 signaling regulates many phenotypes, including escape behavior, associative learning, immunity and longevity. Our data suggest MALT1 has an ancient role modulating neural function downstream of IL-17 to remodel physiological and behavioral state.


Sign in / Sign up

Export Citation Format

Share Document