scholarly journals Host cellular RNA helicases regulate SARS-CoV-2 infection

2021 ◽  
Author(s):  
Yasuo Ariumi

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has largest RNA genome of approximately 30kb among RNA viruses. The DDX DEAD-box RNA helicase is a multifunctional protein involved in all aspects of RNA metabolism. Therefore, host RNA helicases may regulate and maintain such large viral RNA genome. In this study, I investigated the potential role of several host cellular RNA helicases in SARS-CoV-2 infection. Notably, DDX21 knockdown markedly accumulated intracellular viral RNA and viral production, as well as viral infectivity of SARS-CoV-2, indicating that DDX21 strongly restricts the SARS-CoV-2 infection. As well, MOV10 RNA helicase also suppressed the SARS-CoV-2 infection. In contrast, DDX1, DDX5, and DDX6 RNA helicases were required for SARS-CoV-2 replication. Indeed, SARS-CoV-2 infection dispersed the P-body formation of DDX6 and MOV10 RNA helicases as well as XRN1 exonuclease, while the viral infection did not induce stress granule formation. Accordingly, the SARS-CoV-2 nucleocapsid (N) protein interacted with DDX6, DDX21, and MOV10 and disrupted the P-body formation, suggesting that SARS-CoV-2 N hijacks DDX6 to utilize own viral replication and overcomes their anti-viral effect of DDX21 and MOV10 through as interaction with host cellular RNA helicase. Altogether, host cellular RNA helicases seem to regulate the SARS-CoV-2 infection.

2016 ◽  
Vol 90 (11) ◽  
pp. 5384-5398 ◽  
Author(s):  
Long Liu ◽  
Jiao Tian ◽  
Hao Nan ◽  
Mengmeng Tian ◽  
Yuan Li ◽  
...  

ABSTRACTPorcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein is the main component of the viral capsid to encapsulate viral RNA, and it is also a multifunctional protein involved in the regulation of host cell processes. Nonstructural protein 9 (Nsp9) is the RNA-dependent RNA polymerase that plays a critical role in viral RNA transcription and replication. In this study, we demonstrate that PRRSV N protein is bound to Nsp9 by protein-protein interaction and that the contacting surface on Nsp9 is located in the two predicted α-helixes formed by 48 residues at the C-terminal end of the protein. Mutagenesis analyses identified E646, E608, and E611 on Nsp9 and Q85 on the N protein as the pivotal residues participating in the N-Nsp9 interaction. By overexpressing the N protein binding fragment of Nsp9 in infected Marc-145 cells, the synthesis of viral RNAs, as well as the production of infectious progeny viruses, was dramatically inhibited, suggesting that Nsp9-N protein association is involved in the process of viral RNA production. In addition, we show that PRRSV N interacts with cellular RNA helicase DHX9 and redistributes the protein into the cytoplasm. Knockdown of DHX9 increased the ratio of short subgenomic mRNAs (sgmRNAs); in contrast, DHX9 overexpression benefited the synthesis of longer sgmRNAs and the viral genomic RNA (gRNA). These results imply that DHX9 is recruited by the N protein in PRRSV infection to regulate viral RNA synthesis. We postulate that N and DHX9 may act as antiattenuation factors for the continuous elongation of nascent transcript during negative-strand RNA synthesis.IMPORTANCEIt is unclear whether the N protein of PRRSV is involved in regulation of the viral RNA production process. In this report, we demonstrate that the N protein of the arterivirus PRRSV participates in viral RNA replication and transcription through interacting with Nsp9 and its RdRp and recruiting cellular RNA helicase to promote the production of longer viral sgmRNAs and gRNA. Our data here provide some new insights into the discontinuous to continuous extension of PRRSV RNA synthesis and also offer a new potential anti-PRRSV strategy targeting the N-Nsp9 and/or N-DHX9 interaction.


2017 ◽  
Vol 199 (13) ◽  
Author(s):  
Angel A. Aguirre ◽  
Alexandre M. Vicente ◽  
Steven W. Hardwick ◽  
Daniela M. Alvelos ◽  
Ricardo R. Mazzon ◽  
...  

ABSTRACT In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of rhlE, rhlB, and rhlE rhlB mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of rhlE to the lacZ reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins. IMPORTANCE DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. Caulobacter crescentus is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for rhlB loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.


1995 ◽  
Vol 308 (3) ◽  
pp. 839-846 ◽  
Author(s):  
J Sowden ◽  
W Putt ◽  
K Morrison ◽  
R Beddington ◽  
Y Edwards

DEAD box proteins share several highly conserved motifs including the characteristic Asp-Glu-Ala-Asp (D-E-A-D in the amino acid single-letter code) motif and have established or putative ATP-dependent RNA helicase activity. These proteins are implicated in a range of cellular processes that involve regulation of RNA function, including translation initiation, RNA splicing and ribosome assembly. Here we describe the isolation and characterization of an embryonic RNA helicase gene, ERH, which maps to mouse chromosome 1 and encodes a new member of the DEAD box family of proteins. The predicted ERH protein shows high sequence similarity to the testes-specific mouse PL10 and to the maternally acting Xenopus An3 helicase proteins. The ERH expression profile is similar, to that of An3, which localizes to the animal hemisphere of oocytes and is abundantly expressed in the embryo. ERH is expressed in oocytes and is a ubiquitous mRNA in the 9 days-post-conception embryo, and at later stages of development shows a more restricted pattern of expression in brain and kidney. The similarities in sequence and in expression profile suggest that ERH is the murine equivalent of the Xenopus An3 gene, and we propose that ERH plays a role in translational activation of mRNA in the oocyte and early embryo.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1005 ◽  
Author(s):  
Jennifer L. Elliott ◽  
Sebla B. Kutluay

The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.


2013 ◽  
Vol 4 (4) ◽  
pp. 369-385 ◽  
Author(s):  
Ricardo Soto-Rifo ◽  
Théophile Ohlmann

2011 ◽  
Vol 39 (2) ◽  
pp. 679-683 ◽  
Author(s):  
Martina Schröder

Human DDX3 is a DEAD (Asp-Glu-Ala-Asp)-box RNA helicase that appears to be a prime target for viral manipulation. While two viruses that manifest major global health threats, HIV and HCV (hepatitis C virus), utilize DDX3 for their replication, other viruses inhibit DDX3's newly identified function in innate antiviral signalling. This review discusses the role of DDX3 in antiviral immunity and its inhibition or exploitation by different viruses.


Parasitology ◽  
2013 ◽  
Vol 140 (8) ◽  
pp. 1016-1025 ◽  
Author(s):  
MEGHNA SINGH ◽  
NIDHI SHRIVASTAVA ◽  
UZMA SAQIB ◽  
MOHAMMAD IMRAN SIDDIQI ◽  
SHAILJA MISRA-BHATTACHARYA

SUMMARYDEAD Box RNA helicases are essential enzymes that are involved in RNA metabolic processes such as transcription, pre-mRNA splicing, translation initiation and RNA decay. We have previously over-expressed and biochemically characterized an immunodominant cDNA clone encoding DEAD box RNA helicase (BmL3-Helicase) isolated by immunoscreening of the larval stage cDNA library ofBrugia malayi.In the current study, the 3D structure was determined and the immunoprophylactic efficacy of BmL3-Helicase was investigated by immunizingMastomys couchawith the recombinant protein and subsequently challenging withB. malayiinfective larvae. The immunization had an adverse outcome on the establishment of challenged larvae resulting in a 67·4% reduction in adult parasite recovery, a 86·7% decrease in the microfilarial density and profound sterility of the recovered female worms. The immune response thus generated was investigated by measuring the levels of specific antibodies including IgG subclasses, reactive oxygen species and cytokines.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Weike Li ◽  
Ryan H. Gumpper ◽  
Yusuf Uddin ◽  
Ingeborg Schmidt-Krey ◽  
Ming Luo

ABSTRACTDuring viral RNA synthesis by the viral RNA-dependent RNA polymerase (vRdRp) of vesicular stomatitis virus, the sequestered RNA genome must be released from the nucleocapsid in order to serve as the template. Unveiling the sequestered RNA by interactions of vRdRp proteins, the large subunit (L) and the phosphoprotein (P), with the nucleocapsid protein (N) must not disrupt the nucleocapsid assembly. We noticed that a flexible structural motif composed of an α-helix and a loop in the N protein may act as the access gate to the sequestered RNA. This suggests that local conformational changes in this structural motif may be induced by interactions with the polymerase to unveil the sequestered RNA, without disrupting the nucleocapsid assembly. Mutations of several residues in this structural motif—Glu169, Phe171, and Leu174—to Ala resulted in loss of viral RNA synthesis in a minigenome assay. After implementing these mutations in the viral genome, mutant viruses were recovered by reverse genetics and serial passages. Sequencing the genomes of the mutant viruses revealed that compensatory mutations in L, P, and N were required to restore the viral viability. Corresponding mutations were introduced in L, P, and N, and their complementarity to the N mutations was confirmed by the minigenome assay. Introduction of the corresponding mutations is also sufficient to rescue the mutant viruses. These results suggested that the interplay of the N structural motif with the L protein may play a role in accessing the nucleotide template without disrupting the overall structure of the nucleocapsid.IMPORTANCEDuring viral RNA synthesis of a negative-strand RNA virus, the viral RNA-dependent RNA polymerase (vRdRp) must gain access to the sequestered RNA in the nucleocapsid to use it as the template, but at the same time may not disrupt the nucleocapsid assembly. Our structural and mutagenesis studies showed that a flexible structural motif acts as a potential access gate to the sequestered RNA and plays an essential role in viral RNA synthesis. Interactions of this structural motif within the vRdRp may be required for unveiling the sequestered RNA. This mechanism of action allows the sequestered RNA to be released locally without disrupting the overall structure of the nucleocapsid. Since this flexible structural motif is present in the N proteins of many NSVs, release of the sequestered RNA genome by local conformational changes in the N protein may be a general mechanism in NSV viral RNA synthesis.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Denise S. Whitford ◽  
Brendan T. Whitman ◽  
George W. Owttrim

Although RNA helicases are essentially ubiquitous and perform roles in all stages of RNA metabolism, phylogenetic analysis of the DEAD (Asp-Glu-Ala-Asp)-box RNA helicase family in a single phylum has not been performed. Here, we performed a phylogenetic analysis on DEAD-box helicases from all currently available cyanobacterial genomes, comprising a total of 362 helicase protein sequences from 280 strains. DEAD-box helicases belonging to three distinct clades were observed. Two clades, the CsdA (cold shock DEAD-box A)-like and RhlE (RNA helicase E)-like helicases, cluster with the homologous proteins from Escherichia coli . The third clade, the CrhR (cyanobacterial RNA helicase Redox)-like helicases, is unique to cyanobacteria and characterized by a conserved sequence motif in the C-terminal extension. Restricted distribution is observed across cyanobacterial diversity with respect to both helicase type and strain. CrhR-like and CsdA-like helicases essentially never occur together, while RhlE always occurs with either a CrhR-like or CsdA-like helicase. CrhR-like and RhlE-like proteins occurred in filamentous cyanobacteria of the orders Nostocales , Oscillatoriales and Synechococcales . Similarly, CsdA- and RhlE-like proteins are restricted to unicellular cyanobacteria of the genera Cyanobium and Synechococcus . In addition, the unexpected occurrence of RhlE in two Synechococcus strains suggests recent acquisition and evolutionary divergence. This study, therefore, raises physiological and evolutionary questions as to why DEAD-box RNA helicases encoded in cyanobacterial lineages display restricted distributions, suggesting niches that require either CrhR or CsdA RNA helicase activity but not both. Extensive conservation of gene synteny surrounding the previously described rimO–crhR operon is also observed, indicating a role in the maintenance of photosynthesis. The analysis provides insights into the evolution, origin and dissemination of sequences within a single gene family to yield divergent functional roles.


Sign in / Sign up

Export Citation Format

Share Document