scholarly journals Unsupervised characterization of dynamic functional connectivity reveals age-associated differences in temporal stability and connectivity states during rest and task

2021 ◽  
Author(s):  
Nisha Chetana Sastry ◽  
Dipanjan Roy ◽  
Arpan Banerjee

Understanding brain functions as an outcome of underlying neuro-cognitive network mechanisms in rest and task requires accurate spatiotemporal characterization of the relevant functional brain networks. Recent endeavours of the Neuroimaging community to develop the notion of dynamic functional connectivity is a step in this direction. A key goal is to detect what are the important events in time that delimits how one functional brain network defined by known patterns of correlated brain activity transitions into a 'new' network. Such characterization can also lead to more accurate conceptual realization of brain states, thereby, defined in terms of time-resolved correlations. Nonetheless, identifying the canonical temporal window over which dynamic functional connectivity is operational is currently based on an ad-hoc selection of sliding windows that can certainly lead to spurious results. Here, we introduce a data-driven unsupervised approach to characterize the high dimensional dynamic functional connectivity into dynamics of lower dimensional patterns. The whole-brain dynamic functional connectivity states bearing functional significance for task or rest can be explored through the temporal correlations, both short and long range. The present study investigates the stability of such short- and long-range temporal correlations to explore the dynamic network mechanisms across resting state, movie viewing and sensorimotor action tasks requiring varied degrees of attention. As an outcome of applying our methods to the fMRI data of a healthy ageing cohort we could quantify whole-brain temporal dynamics which indicates naturalistic movie watching task is closer to resting state than the sensorimotor task. Our analysis also revealed an overall trend of highest short range temporal network stability in the sensorimotor task, followed by naturalistic movie watching task and resting state that remains similar in both young and old adults. However, the stability of neurocognitive networks in the resting state in young adults is higher than their older counterparts. Thus, healthy ageing related differences in quantification of network stability along task and rest provides a blueprint of how our approach can be used for cohort studies of mental health and neurological disorders.

2015 ◽  
Vol 6 ◽  
Author(s):  
Maria Botcharova ◽  
Luc Berthouze ◽  
Matthew J. Brookes ◽  
Gareth R. Barnes ◽  
Simon F. Farmer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory Simchick ◽  
Kelly M. Scheulin ◽  
Wenwu Sun ◽  
Sydney E. Sneed ◽  
Madison M. Fagan ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) has significant potential to evaluate changes in brain network activity after traumatic brain injury (TBI) and enable early prognosis of potential functional (e.g., motor, cognitive, behavior) deficits. In this study, resting-state and task-based fMRI (rs- and tb-fMRI) were utilized to examine network changes in a pediatric porcine TBI model that has increased predictive potential in the development of novel therapies. rs- and tb-fMRI were performed one day post-TBI in piglets. Activation maps were generated using group independent component analysis (ICA) and sparse dictionary learning (sDL). Activation maps were compared to pig reference functional connectivity atlases and evaluated using Pearson spatial correlation coefficients and mean ratios. Nonparametric permutation analyses were used to determine significantly different activation areas between the TBI and healthy control groups. Significantly lower Pearson values and mean ratios were observed in the visual, executive control, and sensorimotor networks for TBI piglets compared to controls. Significant differences were also observed within several specific individual anatomical structures within each network. In conclusion, both rs- and tb-fMRI demonstrate the ability to detect functional connectivity disruptions in a translational TBI piglet model, and these disruptions can be traced to specific affected anatomical structures.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Charles A. Ellis ◽  
Zhijia Liang ◽  
Zening Fu ◽  
...  

Background: Schizophrenia affects around 1% of the global population. Functional connectivity extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been used to study schizophrenia and has great potential to provide novel insights into the disorder. Some studies have shown abnormal functional connectivity in the default mode network (DMN) of individuals with schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and symptom severity have not been well-characterized.Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) across two datasets were analyzed independently. We captured seven maximally independent subnodes in the DMN by applying group independent component analysis and estimated dFC between subnode time courses using a sliding window approach. A clustering method separated the dFCs into five reoccurring brain states. A feature selection method modeled the difference between SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden Markov model to characterize the link between symptom severity and dFC in SZ subjects.Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased with symptom severity.Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner and demonstrated that the strength of connectivity within those states differed between SZs and HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of DMN functional connectivity. We validated our results across two datasets. These results support the potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship between schizophrenia and DMN dynamics.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


Neuron ◽  
2020 ◽  
Vol 108 (3) ◽  
pp. 424-435.e4 ◽  
Author(s):  
Nawal Kinany ◽  
Elvira Pirondini ◽  
Silvestro Micera ◽  
Dimitri Van De Ville

Sign in / Sign up

Export Citation Format

Share Document