scholarly journals Joint Gene Network Construction by Single-Cell RNA Sequencing Data

2021 ◽  
Author(s):  
Meichen Dong ◽  
Yiping He ◽  
Yuchao Jiang ◽  
Fei Zou

In contrast to differential gene expression analysis at single-gene level, gene regulatory networks (GRN) analysis depicts complex transcriptomic interactions among genes for better understandings of underlying genetic architectures of human diseases and traits. Recently, single-cell RNA sequencing (scRNA-seq) data has started to be used for constructing GRNs at a much finer resolution than bulk RNA-seq data and microarray data. However, scRNA-seq data are inherently sparse which hinders the direct application of the popular Gaussian graphical models (GGMs). Furthermore, most existing approaches for constructing GRNs with scRNA-seq data only consider gene networks under one condition. To better understand GRNs under different but related conditions with single-cell resolution, we propose to construct Joint Gene Networks with scRNA-seq data (JGNsc) using the GGMs framework. To facilitate the use of GGMs, JGNsc first proposes a hybrid imputation procedure that combines a Bayesian zero-inflated Poisson (ZIP) model with an iterative low-rank matrix completion step to efficiently impute zero-inflated counts resulted from technical artifacts. JGNsc then transforms the imputed data via a nonparanormal transformation, based on which joint GGMs are constructed. We demonstrate JGNsc and assess its performance using synthetic data. The application of JGNsc on two cancer clinical studies of medulloblastoma and glioblastoma identifies novel findings in addition to confirming well-known biological results.

2018 ◽  
Author(s):  
Aanchal Mongia ◽  
Debarka Sengupta ◽  
Angshul Majumdar

AbstractMotivationSingle cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome wide expression analysis at single cell resolution, provides a window into dynamics of cellular phenotypes. This facilitates characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified.ResultsWe introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, performance of dimensionality reduction techniques for cell visualization and gene distribution.Availability and Implementationhttps://github.com/aanchalMongia/McImpute_scRNAseq


Author(s):  
Yinlei Hu ◽  
Bin Li ◽  
Falai Chen ◽  
Kun Qu

Abstract Unsupervised clustering is a fundamental step of single-cell RNA sequencing data analysis. This issue has inspired several clustering methods to classify cells in single-cell RNA sequencing data. However, accurate prediction of the cell clusters remains a substantial challenge. In this study, we propose a new algorithm for single-cell RNA sequencing data clustering based on Sparse Optimization and low-rank matrix factorization (scSO). We applied our scSO algorithm to analyze multiple benchmark datasets and showed that the cluster number predicted by scSO was close to the number of reference cell types and that most cells were correctly classified. Our scSO algorithm is available at https://github.com/QuKunLab/scSO. Overall, this study demonstrates a potent cell clustering approach that can help researchers distinguish cell types in single-cell RNA sequencing data.


Author(s):  
Rui-Qi Wang ◽  
Wei Zhao ◽  
Hai-Kui Yang ◽  
Jia-Mei Dong ◽  
Wei-Jie Lin ◽  
...  

Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells with different consensus molecular subtypes (CMS). The advancements in single-cell RNA sequencing have facilitated the development of gene regulatory networks to decode key regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC patients by using single-cell RNA-sequencing data. CMS for all malignant cells were assigned using CMScaller. Gene set variation analysis showed pathway activity differences consistent with those reported in previous studies. Cell–cell communication analysis confirmed that CMS1 was more closely related to immune cells, and that monocytes and macrophages play dominant roles in the CRC tumor microenvironment. On the basis of the constructed gene regulation networks (GRNs) for each subtype, we identified that the critical transcription factor ERG is universally activated and upregulated in all CMS in comparison with normal cells, and that it performed diverse roles by regulating the expression of different downstream genes. In summary, molecular subtyping of single-cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene regulatory networks and identify critical regulators of CRC.


2020 ◽  
Vol 16 (5) ◽  
pp. 465-473
Author(s):  
Ye-Sen Sun ◽  
Le Ou-Yang ◽  
Dao-Qing Dai

The development of single-cell RNA-sequencing (scRNA-seq) technologies brings tremendous opportunities for quantitative research and analyses at the cellular level.


2021 ◽  
Author(s):  
Boris M. Brenerman ◽  
Benjamin D. Shapiro ◽  
Michael C. Schatz ◽  
Alexis Battle

AbstractSingle-cell RNA sequencing data contain patterns of correlation that are poorly captured by techniques that rely on linear estimation or assumptions of Gaussian behavior. We apply random forest regression to scRNAseq data from mouse brains, which identifies the co-regulation of genes within specific cellular contexts. By analyzing the estimators of the random forest, we identify several novel candidate gene regulatory networks and compare these networks in aged and young mice. We demonstrate that cell populations have cell-type specific phenotypes of aging that are not detected by other methods, including the collapse of differentiating oligodendrocytes but not precursors or mature oligodendrocytes.


2020 ◽  
Author(s):  
Harsh Shrivastava ◽  
Xiuwei Zhang ◽  
Srinivas Aluru ◽  
Le Song

AbstractMotivationGene regulatory networks (GRNs) are graphs that specify the interactions between transcription factors (TFs) and their target genes. Understanding these interactions is crucial for studying the mechanisms in cell differentiation, growth and development. Computational methods are needed to infer these networks from measured data. Although the availability of single cell RNA-Sequencing (scRNA-Seq) data provides unprecedented scale and resolution of gene-expression data, the inference of GRNs remains a challenge, mainly due to the complexity of the regulatory relationships and the noise in the data.ResultsWe propose GRNUlar, a novel deep learning architecture based on the unrolled algorithms idea for GRN inference from scRNA-Seq data. Like some existing methods which use prior information of which genes are TFs, GRNUlar also incorporates this TF information using a sparse multi-task deep learning architecture. We also demonstrate the application of a recently developed unrolled architecture GLAD to recover undirected GRNs in the absence of TF information. These unrolled architectures require supervision to train, for which we leverage the existing synthetic data simulators which generate scRNA-Seq data guided by a GRN. We show that unrolled algorithms outperform the state-of-the-art methods on synthetic data as well as real datasets in both the settings of TF information being absent or available.AvailabilityGithub link to GRNUlar - https://github.com/Harshs27/[email protected]


Author(s):  
ChuanYuan Wang ◽  
Ying-Lian Gao ◽  
Jin-Xing Liu ◽  
Xiong-Zhen Kong ◽  
Chun-Hou Zheng

2017 ◽  
Author(s):  
David van Dijk ◽  
Juozas Nainys ◽  
Roshan Sharma ◽  
Pooja Kaithail ◽  
Ambrose J. Carr ◽  
...  

ABSTRACTSingle-cell RNA-sequencing is fast becoming a major technology that is revolutionizing biological discovery in fields such as development, immunology and cancer. The ability to simultaneously measure thousands of genes at single cell resolution allows, among other prospects, for the possibility of learning gene regulatory networks at large scales. However, scRNA-seq technologies suffer from many sources of significant technical noise, the most prominent of which is ‘dropout’ due to inefficient mRNA capture. This results in data that has a high degree of sparsity, with typically only ~10% non-zero values. To address this, we developed MAGIC (Markov Affinity-based Graph Imputation of Cells), a method for imputing missing values, and restoring the structure of the data. After MAGIC, we find that two- and three-dimensional gene interactions are restored and that MAGIC is able to impute complex and non-linear shapes of interactions. MAGIC also retains cluster structure, enhances cluster-specific gene interactions and restores trajectories, as demonstrated in mouse retinal bipolar cells, hematopoiesis, and our newly generated epithelial-to-mesenchymal transition dataset.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
George C. Linderman ◽  
Jun Zhao ◽  
Manolis Roulis ◽  
Piotr Bielecki ◽  
Richard A. Flavell ◽  
...  

AbstractA key challenge in analyzing single cell RNA-sequencing data is the large number of false zeros, where genes actually expressed in a given cell are incorrectly measured as unexpressed. We present a method based on low-rank matrix approximation which imputes these values while preserving biologically non-expressed genes (true biological zeros) at zero expression levels. We provide theoretical justification for this denoising approach and demonstrate its advantages relative to other methods on simulated and biological datasets.


Sign in / Sign up

Export Citation Format

Share Document